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Paris Centre
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Résumé
L’augmentation du volume de données collectées par des capteurs et générées par des
interactions humaines a mené à l’utilisation des bases de données orientées graphes en
tant que modèle de représentation efficace pour les données complexes. Les techniques
permettant de tracer les calculs qui ont été appliqués aux données au sein d’une base de
données relationnelle classique sont sur le devant de la scène, notamment grâce à leur
utilité pour faire respecter les régulations sur les données privées telles que le RGPD
en Union Européenne. Notre travail de recherche croise ces deux problématiques en
s’intéressant à un modèle de provenance à base de semi-anneaux pour les requêtes nav-
igationnelles. Nous commençons par présenter une étude approfondie de la théorie des
semi-anneaux et de leurs applications au sein des sciences informatiques en se concen-
trant sur les résultats ayant un intérêt direct pour notre travail de recherche. La richesse
de la littérature sur le domaine nous a notamment permis d’obtenir une borne inférieure
sur la complexité de notre modèle. Dans une seconde partie, nous étudions le modèle en
lui-même et introduisons un ensemble cohérent d’algorithmes permettant d’effectuer des
calculs de provenance et adaptés aux propriétés des semi-anneaux utilisés. Nous intro-
duisons notablement une nouvelle méthode basée sur la théorie des treillis permettant de
calculer la provenance pour des requêtes complexes. Nous proposons une implémentation
open-source de ces algorithmes et faisons une étude expérimentale sur de larges réseaux
de transport issus de la vie réelle pour attester de l’efficacité pratique de notre ap-
proche. On s’intéresse finalement au positionnement de ce cadre de travail par rapport
à d’autres modèles de provenance à base de semi-anneaux. Nous nous intéressons à
Datalog en particulier. Nous démontrons que les méthodes que nous avons développées
pour les bases de données orientées graphes peuvent se généraliser sur des requêtes
Datalog. Nous montrons de plus qu’elles peuvent être vues comme des généralisations
de la méthode semi-näıve. En se basant sur ce fait-là, nous étendons les capacités de
Soufflé, un évaluateur Datalog appartenant à l’état de l’art, afin d’effectuer des calculs
de provenance pour des requêtes Datalog. Les études expérimentales basées sur cette
implémentation open-source confirment que cette approche reste compétitive avec les
solutions spécifiques pour les graphes, mais tout en étant plus générale. Nous terminons
par une discussion sur les améliorations possibles du modèle et énonçons les questions
ouvertes qui ont été soulevées au cours de ce travail.
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Abstract
The growing amount of data collected by sensors or generated by human interaction
has led to an increasing use of graph databases, an efficient model for representing in-
tricate data. Techniques to keep track of the history of computations applied to the
data inside classical relational database systems are also topical because of their appli-
cation to enforce Data Protection Regulations (e.g., GDPR). Our research work mixes
the two by considering a semiring-based provenance model for navigational queries over
graph databases. We first present a comprehensive survey on semiring theory and their
applications in different fields of computer sciences, geared towards their relevance for
our context. From the richness of the literature, we notably obtain a lower bound for
the complexity of the full provenance computation in our setting. In a second part,
we focus on the model itself by introducing a toolkit of provenance-aware algorithms,
each targeting specific properties of the semiring of use. We notably introduce a new
method based on lattice theory permitting an efficient provenance computation for com-
plex graph queries. We propose an open-source implementation of the above-mentioned
algorithms, and we conduct an experimental study over real transportation networks of
large size, witnessing the practical efficiency of our approach in practical scenarios. We
finally consider how this framework is positioned compared to other provenance models
such as the semiring-based Datalog provenance model. We make explicit how the meth-
ods we applied for graph databases can be extended to Datalog queries, and we show
how they can be seen as an extension of the semi-näıve evaluation strategy. To leverage
this fact, we extend the capabilities of Soufflé, a state-of-the-art Datalog solver, to
design an efficient provenance-aware Datalog evaluator. Experimental results based on
our open-source implementation entail the fact this approach stays competitive with
dedicated graph solutions, despite being more general. In a final round, we discuss on
some research ideas for improving the model, and state open questions raised by our
work.
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Je tiens à remercier tout particulièrement mes parents et ma défunte grand-mère pour
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Mes derniers mots vont finalement pour toi, Marie-Pierre. Je tiens à te remercier
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Introduction générale
Commençons par étudier les mots qui constituent le titre de la thèse. Le premier mot
qui saute aux yeux est le mot databases “bases de données”. En effet, notre objectif
principal est de traiter de l’information stockée sous forme de documents structurés. La
théorie des bases de données a initialement connu son essor grâce aux bases de données
relationnelles introduites dans les années 70 par Codd [1970]. La représentation logique
des données se fait à l’aide de relations n-aires et l’information peut en être extraite à
l’aide de langages de données universels tels que l’algèbre relationnelle (vision impérative)
ou le calcul relationnel (vision déclarative). Ces deux langages ont été démontrés comme
étant équivalents par ce qui est couramment appelé le théorème de Codd. Un SGBDR
(Système de Gestion de Base de Données Relationnelle), réalisation logicielle concrète
de ce type de bases de données, est communément prévu pour supporter des requêtes
SQL, un langage de requête standardisé inspiré des deux langages susmentionnés.

Ces dernières années ont vu apparâıtre une augmentation exponentielle de données
disponibles, capturées par des capteurs comme pour les applications IOT (Internet Of
Things), ou générées par des humains comme sur les réseaux sociaux ou le Web 2.0. Ceci
a favorisé l’émergence de nouveaux paradigmes pour pouvoir gérer ces quantités très
conséquentes de données, sous la forme de nouvelles bases de données appelées NoSQL
(Not Only SQL). Elles permettent de pallier les limitations intrinsèques des bases de
données relationnelles (peu enclines à être gérées au sein d’un système distribué). Ces
bases de données non relationnelles sont catégorisées en quatre grands types, suivant
l’application que l’on souhaite en faire : clé-valeur, graphes, colonnes et documents.

Parmi ces quatres grands types, on s’est concentré dans cette thèse sur les bases
de données graphes. Elles sont communément utilisées pour leur capacité à exprimer
élégamment les relations entre les données elles-mêmes : les arêtes du graphe modélisent
les relations entre les nœuds de données du graphe et sont donc des informations stockées
dans la base de données elle-même. A l’opposé, les bases de données relationnelles
nécessitent d’être interrogées en utilisant des jointures coûteuses pour récupérer ce type
d’information. Ainsi, des informations comme les relations entre les utilisateurs dans
l’analyse des réseaux sociaux ou l’historique des achats des clients (relation entre un
utilisateur et un produit) dans le cadre d’applications commerciales conviennent par-
faitement à ce type de modèle. Ces bases de données supportent de façon native les
requêtes récursives.

Issu des bases de données relationnelles, le concept de provenance d’une requête qui a
été introduit au début du 21ème siècle [Cheney et al. 2009] ajoute de l’information au
résultat d’une requête. Comme son nom l’indique, la provenance capture de l’information
se référant à l’origine des données calculées et donne des indices sur les opérations con-
duites pendant l’évaluation de la requête. Ce concept a connu un certain essor étant
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donné sa capacité à exprimer une grande variété de tâches de gestion de données (on
peut se référer à [Senellart 2019] pour plus de détails): bases de données probabilistes
et incomplètes, gestion des vues ainsi que des explications plus ou moins précises des
résultats de requêtes (connues sous les termes anglophones de How, Why et Where
provenance).

Green et al. ont introduit la notion de semi-anneaux de provenance [2007] en re-
marquant que les calculs impliqués dans les tâches de gestion de données mentionnées
ci-dessus sont fortement similaires. Le modèle fortement générique ainsi proposé utilise
la structure de semi-anneau comme modèle algébrique pour exprimer les calculs de
provenance sur l’algèbre relationnelle et Datalog.

Nous venons de présenter les concepts centraux de la thèse au lecteur, et nous prenons
maintenant le temps de discuter des principes qui nous ont guidés durant ce doctorat.
Les bases de données graphes faisant partie des bases de données NoSQL – usuellement
utilisées pour des applications de big-data – cela nous force à considérer des solutions
pouvant passer à l’échelle, afin de pouvoir les mettre en œuvre dans des cas pratiques.
Chaque partie logique de la thèse est accompagnée d’une implémentation librement dis-
tribuée, venant avec son lot d’expérimentations conduites sur des ensembles de données
minutieusement choisis afin d’attester de l’efficacité pratique des solutions que nous pro-
posons.

Tandis que de profondes connexions ont été établies entre la provenance à base de semi-
anneaux et d’autres domaines de recherche, comme par exemple la programmation par
contraintes (se référer à la conclusion de [Green et al. 2007]), le modèle que nous avons
considéré durant ce doctorat pour capturer les informations de provenance dans les bases
de données graphes est lui-même fortement relié à encore plus d’autres domaines. Nous
avons effectué en conséquence un travail bibliographique et théorique pour bénéficier de
la richesse des sciences informatiques.

Revenons-en maintenant à la genèse du doctorat. Avant qu’il ne commence, j’ai ef-
fectué mon stage de master dans l’équipe Valda et à cette occasion, Pierre, Silviu et
moi avons travaillé sur les bases de la provenance à base de semi-anneaux pour les bases
de données graphes. Ce modèle, inspiré de la provenance à base de semi-anneaux pour
les bases de données relationnelles et les requêtes Datalog [Green et al. 2007], permet
d’exprimer une grande variété de requêtes comme les k-meilleurs chemins, des restric-
tions d’accès ainsi que le dénombrement de chemins entre deux lieux. En fonction des
propriétés du semi-anneau utilisé pour représenter la provenance – ceci permettant plus
ou moins d’expressivité – nous avons généralisé trois algorithmes pour graphes déjà exis-
tants de généralité et complexité croissantes. Des résultats expérimentaux préliminaires
ont attesté que cette approche restait praticable pour de très larges réseaux de trans-
ports, pour lesquels, malgré une littérature riche autour du routage efficace, aucune
solution donnant des méta-informations sur le chemin optimal entre deux lieux n’a été
développée. Les travaux effectués au cours de ce stage, et dont nous venons de faire un
bref récapitulatif, ont été publiés dans [Ramusat et al. 2018].
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Motivations et organisation du manuscrit
Ce manuscrit est une opportunité de présenter des contributions ne trouvant pas facile-
ment leur place dans un article de conférence. Nous avons poursuit l’objectif de rédiger
et présenter ce document comme le serait une monographie centrée sur le modèle de
provenance à base de semi-anneaux pour les bases de données graphes, étant donné que
l’on s’intéresse aussi au positionnement de ce modèle vis-à-vis d’une vision algébrique
des sciences du numérique.

Partie I : Préliminaires
Tandis que la partie I décrit le contexte scientifique autour duquel le document s’articule,
nous saisissons l’occasion de faire une étude détaillée sur la théorie des semi-anneaux et
leurs applications dans les sciences de l’informatique. Nous en appelions déjà dans [Ra-
musat et al. 2021a] à la nécessité de faire un point sur la diversité des applications
des semi-anneaux, sous peine de perdre l’opportunité de bénéficier de ce qui a déjà
été fait dans des domaines connexes à l’aide de structures algébriques similaires, mais
dénommées différemment.

Il y a aussi des raisons pédagogiques derrière ce travail de synthèse. Nous avons été
confronté pendant ces années à une quantité conséquente de notions et d’applications
en rapport avec les semi-anneaux. Certaines étaient trouvables dans des manuels (par
exemple dans [Cormen et al. 1989] au chapitre 26.4), mais n’ayant jamais été mises
en avant au cours des études supérieures. Notre objectif est de proposer aux futurs
chercheurs du domaine, un ensemble cohérent et complet de concepts, propriétés (sous les
nombreux noms qui leur sont associés dans la littérature) et de références se rapportant
aux semi-anneaux. C’est-à-dire en leur donnant un contexte théorique solide afin de
leur permettre de s’attaquer aux futurs problèmes de recherche. C’est un moyen de
rendre compte des résultats obtenus après les nombreuses heures que nous avons passées
à étudier la littérature afin de trouver des traces d’utilisation des semi-anneaux dans des
contextes où ils ne sont même pas nommés (par exemple dans [Knuth 1977]).

Revenons-en à l’organisation de la partie, le chapitre 1 fera un rappel des notations de
base sur les graphes et sur le langage de requêtes Datalog. Nous dédions le chapitre 2 à
l’étude des semi-anneaux et plus particulièrement la section 2.2 à l’étude des calculs de
points fixes, des sommes infinies et des opérateurs continus au sein d’un semi-anneau.
Finalement, nous abordons dans le chapitre 3 les travaux précurseurs de [Green et al.
2007] introduisant la provenance à base de semi-anneaux pour le modèle relationnel et
Datalog.

Nous soulignons le fait que cette partie, et spécifiquement le chapitre 2, sont des
contributions à part entière de cette thèse.
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Partie II : Modèle de provenance pour les bases de données
orientées graphes

L’essentiel du contenu décrit dans cette partie a été publié à la conférence
EDBT’21 [Ramusat et al. 2021b]. L’implémentation open-source des algorithmes

décrits est une autre contribution de cette thèse [Maniu et al. 2020].

La seconde partie de ce manuscrit est dédiée aux contributions directement reliées au
modèle de provenance pour les bases de données orientées graphes. Nous commençons
par définir le modèle dans le chapitre 4 et nous faisons au chapitre 5 un récapitulatif des
algorithmes que nous avons introduits dans [Ramusat et al. 2018]. Nous discutons aussi
de résultats supplémentaires qui n’ont pas fait l’objet de publication. Nous présentons
ensuite les contributions de la thèse à partir du chapitre 6, qui introduit la nouvelle
approche que nous avons développée dans [Ramusat et al. 2021b] pour combler les limi-
tations du précédent ensemble d’algorithmes que nous avons décrit. Nous avons proposé
une implémentation open-source de tous ces algorithmes [Maniu et al. 2020], et nous
avons conduit une étude expérimentale afin d’évaluer leur efficacité sur des réseaux de
transports issus du monde réel. Nous avons notablement étudié l’impact de propriétés
de graphes telles que la highway dimension [Abraham et al. 2016] et la largeur d’arbre
sur l’efficacité de notre approche. L’ensemble des résultats de cette étude peut être
trouvé dans le chapitre 7. Une taxonomie complète des semi-anneaux et des algorithmes
qui leur sont adaptés peut être trouvée dans le chapitre 8, nous y discutons aussi des
limitations du modèle, principalement énoncées sous la forme d’une borne inférieure sur
le calcul de provenance pour toutes paires.

Partie III : Provenance pour Datalog appliquée aux requêtes sur des
graphes

L’ensemble du travail présenté dans cette partie n’est pas encore publié mais peut
être consulté sur ArXiv [Ramusat et al. 2021a]. Nous avons aussi proposé une

implémentation open-source des méthodes décrites qui est disponible sur
GitHub [Ramusat 2021].

Nous nous intéressons maintenant aux possibilités de généraliser nos précédentes solu-
tions initialement destinées aux bases de données orientées graphes. Nous voulons aussi
dépasser les limitations théoriques, les bornes inférieures, étudiées à la partie précédente.
Une façon naturelle d’étendre nos résultats est de passer par la provenance pour les
programmes Datalog. En effet, les requêtes navigationnelles peuvent être encodées sim-
plement dans ce modèle. Nous commençons par le chapitre 9 qui établit une traduction
entre un modèle de programmation dynamique sur les hypergraphes [Huang 2008] et la
provenance pour Datalog. Ceci nous permet d’obtenir une généralisation d’un algorithme
introduit par Knuth [1977], directement applicable dans notre modèle de provenance. Le
chapitre 10 décrit cet algorithme et montre comment les idées à la base de la méthode
semi-näıve peuvent être réutilisées pour accélérer cette méthode. Nous discuterons aussi
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du fait que l’approche basée sur les treillis distributifs peut aussi s’appliquer à ce cas plus
général. Pour poursuivre avec une étude expérimentale, nous adaptons Soufflé [Jor-
dan et al. 2016], un évaluateur Datalog à l’état de l’art, pour qu’il puisse retourner la
provenance du résultat. Ceci a conduit à une implémentation open-source [Ramusat
2021]. Nos résultats expérimentaux sont présentés dans le chapitre 11. Le chapitre 12
aborde la traduction inverse de celle présentée en début de partie et propose des idées
d’ouverture.

Autres contributions
Nous citons maintenant diverses autres contributions effectuées au cours de cette thèse.
J’ai eu l’opportunité de participer à un atelier des doctorants dans une des conférences
les plus renommées du domaine, VLDB [Ramusat 2019], pour y présenter les résultats
préliminaires du doctorat. J’ai donné une présentation [Ramusat et al. 2020] à la
conférence française autour des bases de données, BDA “Gestion de Données – Principes,
Technologies et Applications” qui favorise les discussions informelles entre les chercheurs
du domaine. Et c’est finalement avec grand plaisir que j’ai donné durant deux ans des
travaux dirigés aux étudiants de première année à l’ENS. Les cours portaient sur la
théorie des bases de données ainsi que sur les langages formels, la calculabilité et la
complexité.
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General Introduction
Let us take a look at the words that constitute the title of this PhD. You may notice
at first the word databases, as our main concern is to process information stored in
some kind of structured documents. Database theory has been primarily focused on
the relational data model introduced in the seventies by Codd [1970]. The data is log-
ically represented as tuples inside n-ary relations and can be queried using a universal
data sublanguage, such as the relational algebra (imperative) or the relational calcu-
lus (declarative), two logically equivalent languages due to Codd’s theorem. RDBMSs
(Relational DataBase Management Systems) are queried using SQL (Structured Query
Language) wich is based upon these two languages.

Undoubtedly, while being the most prominent model for storing data and retrieving
information, the 21st century has come with a dramatically increasing amount of avail-
able data, captured by sensors (e.g., IoT applications), or human-generated (e.g., social
networks, Web 2.0), which required to introduce new database systems to scope with
a very-large amount of data. Such new models are called NoSQL (Not Only SQL)
databases. These non-relational databases are broadly classified into four categories,
depending on their target applications: key-value, graph, column, and document.

Among them, we focus in this PhD on graph-based models. Commonly used when
the relationships between the data is of primary interest: edges with the semantics of
relations between the data nodes are pieces of information contained in the database
system itself, opposite to relational databases where those links have to be retrieved
(using costly JOIN operations) by a query. Thus, strongly-linked information such as
relationships between users for social network analysis or the consumption of customers
(relationships between users and products) in retail industry applications perfectly fit
into this model. These databases provide native support for recursive languages, and
offer the possibility to perform efficient traversal queries.

Stemming from the field of relational databases, the provenance of a query (also called
the lineage), a concept introduced at the beginning of the 21st century [Cheney et al.
2009], consists in additional information provided alongside a query result. As the name
suggests, the provenance collects information about the origin of the data and provides
clues on the operations processing it at evaluation time. It has become a trending field
as its different formalisms encompass many data management tasks (refer to [Senellart
2019] for more details): probabilistic and incomplete databases, view management, and
coarse to fine-grained explanations of query results (How, Why, and Where provenance).

Green et al. introduced the notion of provenance semirings [2007] by taking into
consideration the data management tasks above share strong similarities in the way
computations are performed over the provenance annotations. This work has led to a
comprehensive framework using semirings as an algebraic basis to model the computa-
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tions for relational query languages and Datalog programs.
We have so far introduced the reader to the many concepts this thesis revolves around,

and we now take a break to discuss the guiding principles of this PhD. Graph databases
being part of the many types of NoSQL databases – being commonly used in traditional
big-data applications – it forces us to consider scaling-up solutions to practical scenarios.
Each part of the research work comes along with its own freely-available implementa-
tion we made, together with many experimentations conducted over carefully choosen
datasets, to witness the practical efficiency of our methods.

Diametrically opposite, whereas deep connections with other research areas have been
exhibited between the provenance semiring framework and semiring-based constraint-
solving programming for instance (acknowledged in the conclusion of [Green et al. 2007]),
the model we have considered during this PhD to capture provenance information in
graph databases turns out to also be strongly connected to many other representation
frameworks in the computer science literature. We have pursued a deep bibliographical
and theoretical work to benefit from the richness of computer sciences.

To contextualize this research, prior to this PhD, I did my graduation internship within
the Valda team where, Pierre, Silviu, and I, have set the foundations for the semiring-
based provenance over graph databases. The model, akin to the semiring provenance
model for relational databases and Datalog queries [Green et al. 2007], expresses a wide
range of queries such as k-optimal routes, access restrictions, and number of paths be-
tween two given locations. Depending on the restrictions over the underlying semiring
of use – permitting more or less expressivity – we generalized three existing graph al-
gorithms of increased generality and complexity. Preliminary experimental results are
evidence of the practical efficiency of this approach scaling-up to large-scale transporta-
tion networks, for which, despite rich literature for efficient routing, no solution providing
meta-information about the optimal path between two locations were developed. The
work done during this internship, summarised above, has been published in [Ramusat
et al. 2018].

Rationale and manuscript organization
This manuscript is an opportunity to present developments that are not easily integrated
into publications. We pursue the objective of writing this document as if it were a
monograph around the semiring-based provenance framework for graph databases, as
we look more generally at how the framework we consider is positioned in an algebraic
vision of computer sciences.

Part I: Preliminaries
This part sets the context of this document, but we also take the opportunity to sur-
vey in great detail the widespread field of the theory and applications of semirings in
computer sciences. We have been already calling in [Ramusat et al. 2021a] to focus on
the presentation of the wealth of the scientific knowledge around this ubiquitous mathe-
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matical structure. This would avoid loosing the benefit of investigations pursued under
similar algebraic frameworks by other research communities.

There are also pedagological reasons to provide such an extensive review, as we have
faced throughout these years a tremendous amount of semiring notions and many ap-
plications, some being present in standard textbooks (e.g., [Cormen et al. 1989, Chap-
ter 26.4]), but never emphasized during graduate studies. We hope to provide future
researchers interested in this topic with a comprehensive set of concepts, properties (un-
der their various names and definitions occuring in research works and textbooks) and
references related to semirings. In other words, the aim is to give them a sound the-
oretical background so they can address future challenges over the field. We want to
leave for posterity a valuable account of the many hours we spent finding evidence of
the usage of semirings in diverse contexts, sometimes not being properly acknowledged
by their authors (e.g., [Knuth 1977]).

To come back to the topic, this chapter will also be a reminder in Chapter 1 of
the basic notation for graphs and the Datalog query language. Any researcher curious
about semirings could also find valuable insights into their uses accross the literature
in Chapter 2. We dedicate Section 2.2 to the study of the small but crucial differences
when it comes to capture the semantics of fixed-point computations, infinite sums or
continuous operators inside a semiring. Finally, we introduce in Chapter 3 the seminal
work of [Green et al. 2007] introducing the provenance framework for the relational
model and for Datalog programs.

We stress the fact this whole part, and especially Chapter 2, are contributions per se
of this thesis.

Part II: The graph database provenance model
The bulk of the work content outlined in this part has been published at

EDBT’21 [Ramusat et al. 2021b]. Another contribution is the
open-source implementation of all the described algorithms

which can be found at [Maniu et al. 2020].

The second part of the manuscript focuses on our contributions purely related to the
graph database provenance model. We start by defining the model in Chapter 4 and we
recapitulate the algorithms we introduced in [Ramusat et al. 2018] in Chapter 5. We also
provide some additional results and discussions that have not been included in any paper.
We then start describing the contributions of this thesis in Chapter 6, which introduces
the novel algorithm we proposed in [Ramusat et al. 2021b] to address the limitations
of the set of algorithms described later. We have made an open-source implementation
of all the above-mentioned algorithms [Maniu et al. 2020], and have conducted a com-
prehensive set of experiments comparing their efficiency over real-world transportation
networks. We have notably studied whether the network properties such as highway
dimension [Abraham et al. 2016] and treewidth have an impact on their effectiveness.
All the results of this study can be found in Chapter 7. A comprehensive taxonomy
of semirings and corresponding algorithms, establishing which practical approaches are
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needed in different cases can be found in Chapter 8, and we discuss the limitations of
the model, notably providing a lower bound for full provenance computations.

Part III: Datalog Provenance for Graph Queries
All of the work outlined in this part is still undergoing the peer review process but can
be consulted at [Ramusat et al. 2021a]. We also made a contribution as an open-source

implementation of the method we describe which is available at [Ramusat 2021].

We now focus on how our solutions dedicated to graph databases can be further
generalized. We also want to overcome the limitations of the lower bound we previously
established. A natural way of extending our results is to consider provenance for Datalog
queries, because navigational queries can be captured in this model. We start this
part of the manuscript with Chapter 9 establishing a translation between a dynamic
programming framework over hypergraphs [Huang 2008] and Datalog provenance. We
obtain as result a generalization of an algorithm introduced by Knuth [1977], direcly
applicable to Datalog provenance computations. Chapter 10 describes this algorithm
and shows how the same ideas behind the semi-näıve evaluation strategy can be applied
to speed up this method. We also discuss how the ideas underlying the approach based
on distributive lattices we designed for graph databases also works in this context. To
pursue with an experimental study, we adapted Soufflé [Jordan et al. 2016], a state-
of-the-art Datalog solver, to make it able to process provenance-aware queries. This
led to an open-source implementation [Ramusat 2021]. Our experimental results are
showcased in Chapter 11. Chapter 12 provides the reverse translation of the previously
presented one, and discusses on some open research ideas.

Other Contributions
We now outline the other contributions of this PhD. I had the opportunity to participate
in a PhD Workshop of one of the best conference of the field, namely VLDB, to present
the preliminary research results [Ramusat 2019]. I also gave a talk at a French conference
on databases called BDA “Gestion de Données – Principes, Technologies et Applications”
which favors informal discussions between researchers in the field [Ramusat et al. 2020].
Finally, I had the great honor to teach for two years the tutorials of the database theory
course, and of the formal languages, calculability, and complexity course to the first year
ENS students.
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1. Notation and Basic Structures

1.1. Graphs
Let V be a countably infinite set, whose elements are called node identifiers or node ids.
A graph G over V is a pair (V, E), where V is a finite set of node ids (i.e., V ⊆ V) and
E ⊆ V × V .

Given an edge e ∈ E, we denote by n[e] its second component and we call it its
destination (or next) vertex, by p[e] its first component and we call it its origin (or
previous vertex). Given a vertex v ∈ V , we denote by E[v] the set of edges leaving v.
A path π = e1e2 · · · ek in G is an element of E∗ with consecutive edges: n[ei] = p[ei+1]
for i = 1, . . . , k − 1. The path corresponding to the empty list is called the empty path,
written ϵ.

We extend n and p to paths by setting p[π] := p[e1], and n[π] := n[ek]. A cycle is a path
starting and ending at the same vertex: n[c] = p[c]. If π = e1e2 · · · ek and π′ = e′

1e
′
2 · · · e′

k′

are two paths and n[π] = p[π′], the concatenation ππ′ := e1e2 · · · eke′
1e

′
2 · · · e′

k′ is a path
with p[ππ′] = p[e1] and n[ππ′] = n[e′

k′ ].
Let s ∈ V be a fixed vertex of V called the source. We denote by Psv(G) the set of

paths from s to v ∈ V . By extension, Pij(G) is the set of paths from i to j.

1.1.1. Treewidth
Given a graph G = (V, E), a tree decomposition DG = (SG, TG) of G is a tree TG whose
vertices are elements of SG, where SG is a collection of subsets of V , such that:

1. ⋃
Si∈S

Si = V ;

2. for all edge e of E, ∃Si ∈ SG such that n[e], p[e] ∈ Si;

3. for all element v of V , the elements of SG that contain v form a subtree of T .

The treewidth is then defined as tw(G) := minDG
maxSi∈SG

|Si| − 1. For example, the
treewidth of a tree is 1, the treewidth of a cycle is 2, and the treewidth of a k + 1-clique
is k.

The only property of treewidth relevant to this manuscript is that treewidth can be
characterized in terms of elimination orderings. The elimination of a vertex in a graph
is the operation of removing the vertex from the graph and adding a new edges between
all of its neighbors. An elimination ordering is then an order on the vertices defining a
sequential elimination of all vertices. Over all possible choices of an elimination ordering,
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1. Notation and Basic Structures

we are interested in the one minimizing the maximum neighborhood size encountered
during the process – the width. We call it a simplicial elimination order. It turns out
the width of a simplicial elimination ordering for G is precisely the treewidth of G.

1.2. Datalog
We recall some basics about the Datalog query language and refer the reader to [Abite-
boul et al. 1995] for more details.

A Datalog rule is of the form R(x⃗) :- R1(x⃗1), . . . , Rn(x⃗n) with R’s representing rela-
tions of a given arity and the x⃗’s tuples of variables of corresponding arities. Variables
occurring on the left-hand side, the head of the rule, are required to occur in at least one
of the atoms on the right-hand side, the body of the rule. A Datalog program is a finite
set of Datalog rules. We call fact a rule with an empty body and variables replaced by
constants. We divide relations into extensional ones (which can only occur as head of
a fact, or in rule bodies) and intensional ones (which may occur as heads of a non-fact
rule). The set of extensional relations is called the extensional database (EDB). The set
of intensional facts is called the intensional database (IDB). These two sets are disjoints
and their union is called the schema of the datalog program. We sometimes distinguish
one particular relation occurring in the head of a rule, this relation being the output
predicate of the Datalog program.

Semantics: A Datalog program q describes a mapping from an instance I (a set of
facts in the EDB) to a set of facts q(I) in the IDB. It is often more convenient to call
the input data the extensional database and the program the intensional database.

We outline as Algorithm 1 an example Datalog query leveraging recursivity for com-
puting the transitive closure of a directed graph: the relation edge constitutes the EDB,
and path the IDB.

Algorithm 1 Datalog program computing the transitive closure
1: path(x, y) :- edge(x, y).
2: path(x, y) :- path(x, z), edge(z, y).

1.2.1. Derivation Trees
A derivation (aka. a proof) for a fact in q(I) can be represented by a labeled tree whose
leaves are facts in I and internal nodes correspond to instantiations of rules of q.

Example 1.1. We show in Figure 1.1 an example Datalog program (right) as well as
the (only) two derivation trees of the fact path(Paris, London).

1.2.2. Fixpoint-Theoretic Approach
We now introduce the immediate consequence operator Tq of a Datalog program q. This
operator, given an instance I, computes the new facts that are immediate consequence
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1. Notation and Basic Structures

path(Paris, London)

edge(Paris, London)

dummy

r1

path(Paris, London) 1

path(Paris, Lille)

edge(Paris, Lille)
r1

edge(Lille, London)
r2

edge(Paris, London) :-
edge(Paris, Lille) :-

edge(Lille, London) :-
path(x, y) :- edge(x, y) r1

path(x, y) :- path(x, z),
edge(z, y) r2

Figure 1.1.: Derivation trees for the fact path(Paris, London) using the transitive closure
Datalog program with an EDB containing 3 facts.

(i.e., derivable from I using a single application of a rule of q). This operator is monotone
and its least fixpoint is precisely q(I) [Abiteboul et al. 1995]. This yields a constructive
definition for q(I), that is to compute I ⊊ Tq(I) ⊊ T 2

q (I) ⊊ · · · ⊊ T i
q(I) = T i+1

q (I) = q(I)
until convergence.

Example 1.2. Given the Datalog program and the instance I from Figure 1.1, we have:
Tq(I) = I ∪ {path(Paris, London), path(Paris, Lille), path(Lille, London)} and T 2

q (I) =
Tq(I).
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2. Elements of Semiring Theory and
Their Applications

While not being properly acknowledged in graduate studies, semirings (colloquially
called rigs, because they are rings without negatives) are mathematical structures,
perfectly suited for the representation of computations, playing a central role in the al-
gebraic foundations of computer sciences. One of the prominent uses of such structures
is made by the notion of provenance introduced by Green et al. [2007], stemming from
the field of relational databases and addressing the lack of information about the atomic
database operations leading to the results of a query.

We start with the basis of the theory of semirings. A good starting point for an
introduction on semirings is the chapter Semirings and Formal Power Series: Their
Relevance to Formal Languages and Automata from the textbook Handbook of Formal
Languages [Kuich 1997].

Definition 2.1 (Monoid). A monoid is an algebraic structure (M,⊕, 0̄) where S is some
set, ⊕ is a binary operator over M , and 0̄ is an element of M such that ⊕ is associative
and 0̄ is the identity element for ⊕.

Definition 2.2 (Semiring). A semiring is an algebraic structure (S,⊕,⊗, 0̄, 1̄) where
S is some set, ⊕ and ⊗ are binary operators over S, and 0̄ and 1̄ are elements of S,
satisfying the following axioms:

• (S,⊕, 0̄) is a commutative monoid: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), a ⊕ b = b ⊕ a,
a⊕ 0̄ = 0̄⊕ a = a;

• (S,⊗, 1̄) is a monoid: (a⊗ b)⊗ c = a⊗ (b⊗ c), 1̄⊗ a = a⊗ 1̄ = a;

• ⊗ distributes over ⊕: a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a);

• 0̄ is an annihilator for ⊗: 0̄⊗ a = a⊗ 0̄ = 0̄.

The ⊕ operation is always meant to be commutative, thus, we call a semiring com-
mutative if, for all a, b ∈ S, a ⊗ b = b ⊗ a. A semiring is idempotent if for all a ∈ S,
a ⊕ a = a. One can define a pre-order ≤ over a semiring by defining a ≤ b := ∃h,
a⊕ h = b. We always have for all a, b, c ∈ S, that 0̄ is the smallest element (0̄ ≤ a) and
that ⊕ and ⊗ are monotone: a ≤ b implies a⊕ c ≤ b⊕ c and a⊗ c ≤ b⊗ c. When ≤ is
a partial order it is called the natural order.

Property 2.3. If the semiring is idempotent, then ≤ is a partial order, equivalently
defined by a ≤ b := a⊕ b = b.
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2. Elements of Semiring Theory and Their Applications

Proof. For the first part of the statement, we are only to verify ≤ is an antisymmetric
relation: if x ≤ y and y ≤ x then it exist c and d such that a⊕ c = y and y⊕d = x, thus
x = x ⊕ c ⊕ d and then y = x ⊕ c = x ⊕ c ⊕ d ⊕ c = x. For the equivalence of the two
orders, we observe that if exists h such that a⊕ h = b then a⊕ b = a⊕ a⊕ h = b.

Definition 2.4 (Morphism of semirings). For two semirings (R,⊕R,⊗R, 0̄R, 1̄R) and
(S,⊕S,⊗S, 0̄S, 1̄S), a semiring morphism is a function h: R→ S such that:

• h(0̄R) = 0̄S and h(1̄R) = 1̄S;

• h(r ⊕R r′) = h(r)⊕S h(r′) and h(r ⊗R r′) = h(r)⊗S h(r′) for all r, r′ ∈ R.

A morphism of semirings which is both injective and surjective is called an isomor-
phism. If there exists an isomorphism between semirings R and S we say that R and S
are equivalent.

We give below examples of three important semirings.

Semiring 1 (Boolean semiring). The Boolean semiring ({⊥,⊤},∨,∧,⊥,⊤) where ∨
denotes the disjunction, ∧ the conjuction, ⊥ is the false value, and ⊤ the true value.

Semiring 2 (Tropical semiring on the integers). The (min, +)-semiring on the in-
tegers (N ∪ {∞}, min, +,∞, 0) with, for all c ∈ N+, ∞ + c = c + ∞ = ∞ and
min(c,∞) = min(∞, c) = c.

Semiring 3 (Tropical semiring on the reals). The (min, +)-semiring on the reals
(R+ ∪ {∞}, min, +,∞, 0) with, for all c ∈ R+, ∞ + c = c + ∞ = ∞ and
min(c,∞) = min(∞, c) = c.

Semirings 1, 2, and 3 are all commutative and idempotent semirings. They are thus
naturally ordered: for Semiring 1 the natural order gives ⊥ ≤ ⊤ and for Semirings 2,
and 3 the natural order ≤ is the reversed order on the numbers (0 is the greatest element
and ∞ the least).

2.1. Closed Semirings and the Floyd-Warshall Scheme
This section refers to what is called the Algebraic Path Problem (APP) [Rote 1990],

the (General) Path Problem [Aho et al. 1974; Mehlhorn 1984], or
the Path-finding Problem [Aho et al. 1974; Maggs et al. 1988].

Instead of introducing a plethora of definitions and properties, we go straight into
showcasing semirings in action through a conceptually simple use case, commonly found
in some standard algorithmic textbooks. The reader might already been familiar with
the algebraic formulation of the dynamic programming approach to the computation
of all-pairs shortest paths in directed graphs (APSP), subsuming the transitive-closure
algorithm. These two problems are solved by instantiating the dynamic programming
scheme on a dedicated semiring for each one: the Boolean semiring (Semiring 1) for the
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2. Elements of Semiring Theory and Their Applications

transitive closure of the graph, and the Tropical semiring (Semiring 2 or 3) for the APSP
problem.

We recall here the main ideas, introduced in the textbook of Cormen et al. [1989,
Chapter 26.4]. The aim is to understand which are the required properties of an algebraic
structure to express path problems such as the transitive closure or APSP. This algebraic
framework needs to encompass all of the semirings used to express these problems, but
also needs to be as general as possible. That is to say, the objective is restrict them
only to a set of properties under which the problem is well-formed; this will lead to the
notion of closed semirings.

We consider a directed graph G = (V, E). Some labels over the edges are given by a
labeling function λ : E → S, with range a semiring S. The ⊗ operator of the semiring
will be used to construct labels for paths: λ(e1e2 · · · ek) := λ(e1) ⊗ λ(e2) ⊗ · · · ⊗ λ(ek).
The empty path has label 1̄. Associativity of ⊗ allows to forget the computation order
and ensures the concatenation for paths to be well-defined: λ(ππ′) := λ(π)⊗ λ(π′).

For the Boolean semiring, labeling an edge with value ⊤ indicates its availability (we
can go through), hence, implicitly all the elements of E are positively labeled and the
remaining elements in (V ×V )\E have label ⊥. It will be understood for the rest of the
section that under each semiring, missing edges have label 0̄. The Tropical semiring en-
riches the positive labels by offering the opportunity to provide scalar values to available
connections in the graph (such as the traveling time between two locations), unavailable
edges are now labeled by ∞ (the 0̄ element of any Tropical semiring). Somehow, any
version of a Tropical semiring seems to be an extension of the Boolean semiring: this is
formally stated as the fact it exists a surjective morphism (mapping any non ∞ value
to ⊤) from any Tropical semiring to the Boolean one.

The ⊗ operator permits to give the expected semantic for paths: (∧) ensures each of
the constituent edges to be available for the path to be praticable, while the traveling
time is the sum (+) of the travel time for each connections.

The ⊕ operator aggregates labels over a given (possibly infinite) set of paths. Because
there are countably many paths in a graph, we thus assume for the rest of this example
that infinite stands for countably infinite. This allows us to define the aggregate of the
labels between two vertices.

lij :=
⊕

π∈Pij(G)
λ(π) (2.1)

Because no summation order is provided in Equation 2.1, ⊕ has to be associative and
commutative. Following Cormen et al. [1989], it is mandatory for ⊕ to be idempotent to
remain consistent with set semantics. This limitation has been criticized in the literature
(e.g., Lehmann [1977]) and sometimes [see Mehlhorn 1984, Chapter 5] a closed semiring
is not required to be idempotent. For the sake of simplicity, we will follow the design
choice of Cormen et al. and use an idempotent structure until the end of the section.
Nevertheless, we will get rid of this limitation in the forthcoming chapters.

While the sum in Equation 2.1, being possibly infinite, is not an issue using the Boolean
semiring, special attention ought to be paid when using real values. In the case of the
Tropical Semiring, this “formal sum” turns out to be the notion of infimum for countable
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2. Elements of Semiring Theory and Their Applications

sequences. Therefore, additional properties are needed for infinite sums to behave as
expected. We assume the summation operator to be extended for countably infinite sums
(i.e. ⊕i∈I ai is well-defined). Further more, computations are still independent on the
computation order (associativity extends to infinite sums), the terms can be reordered
and duplicates can be removed (commutativity and idempotence also extend to infinite
sequences). The distributivity must hold to be able to factorize diverging paths (paths
starting by a common subpath), it also needs to hold in case of infinite sums to handle
cycles.

The notion of closed semiring encompasses the above properties:
Definition 2.5 (Closed semiring [Cormen et al. 1989]). A closed semiring is an idem-
potent semiring S having additional properties:

• If (ai)i∈I is a countable sequence of elements of S, ⊕i∈I ai is well-defined and
belongs to S;

• Associativity, commutativity and idempotence extend to infinite sums;

• ⊗ distributes over infinite sums: a⊗ (⊕i∈I bi) = ⊕
i∈I (a⊗ bi) and (⊕i∈I bi)⊗ a =⊕

i∈I (bi ⊗ a).
In closed semirings an additional operation can be defined, the closure operator : for

each a ∈ S, a∗ := 1̄⊕ a⊕ a2 ⊕ · · · = ⊕
0≤i

ai. The reader may recall the notion of Kleene
star for regular languages. Indeed they are strongly related; Section 2.2 will cover the
links between those notions. To distinguish between the infinite summation operator
and ⊕ we will also denote the former by

∑
.

Property 2.6. The boolean semiring ({⊥,⊤},∨,∧,⊥,⊤) is a closed semiring.
Property 2.7. The (min, +)-semiring on the integers (N∪{∞}, min, +,∞, 0) is a closed
semiring.
Property 2.8. The (min, +)-semiring on the reals (R+∪{∞}, min, +,∞, 0) is a closed
semiring.

Algorithm 2 introduces what is also called in the Kleene method for solving the APSP
problem [Mehlhorn 1984]. According to Cormen et al., the Floyd-Warshall algorithm
has been proposed by Floyd [1962] inspired by Warshall’s theorem [1962] for computing
the closure of a graph.

We have so far introduced some notions from the textbook of Cormen et al. [1989,
Chapter 26.4]. Note this chapter is only present in the first edition of the book and
removed from the subsequent one. The authors acknowledged the fact the underlying
structure of closed semirings has been previously introduced by Aho et al. [1974]. A
more in depth analysis of such framework can be found in the Mehlhorn’s book [1984,
Chapter 5]; Section 2.3 will discuss their results related to theoretical lower-bounds. The
first part of the thesis focuses on the semiring-based provenance framework for graph
databases, which generalizes what we have just presented there. This section permitted
us to give valuable insights, on a simpler model, on how semirings permit to capture the
expected semantics of real life concerns.
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Algorithm 2 Floyd–Warshall [Cormen et al. 1989] – All-pairs shortest-distance
Input: G = (V, E, λ) with n = |V | a directed graph with labels over a closed semiring S.
Output: The matrix Ln = [ln

ij] of aggregated labels between every pair of nodes.
1: for i ∈ V do
2: for j ∈ V do

3: l0
ij =

{
λ(i, j) if i ̸= j,
1̄⊕ λ(i, j) if i = j

4: end for
5: end for
6: for k ← 1 to n do
7: for i ∈ V do
8: for j ∈ V do
9: lk

ij = lk−1
ij ⊕

(
lk−1
ik ⊗ (lk−1

kk )∗ ⊗ lk−1
kj

)
10: end for
11: end for
12: end for

2.1.1. Going Deeper and Deeper: Equational Systems and Matrices
We have so far discussed some problems related to weighted sets of paths. Nevertheless,
this representation – much more appealing to computer scientists – is in fact a particular
instance of the resolution of equational systems and of matrix operations, fundamental
tools for mathematicians. We shall now discuss the same problem, but rephrased as a
solution of a system of equations.

Semiring 4 (Semiring of formal languages over Σ). The semiring of formal languages
FΣ = (2Σ∗

,∪, ·,∗ , ∅, {ϵ}) with L∗ = ⋃
n≥0

Ln for all L ⊆ Σ∗.

Semiring 4 contains all the languages over Σ, not only the relational, or even context-
free, languages.

Property 2.9 ([Aho et al. 1974]). The semiring of formal languages FΣ is a closed
semiring.

We can turn an automaton A = (Q, Σ, q0, δ, F ⊆ Q) into a labeled graph G = (V, E)
over FΣ whose vertices are the states of the automaton (i.e., V = Q) and the labels are
given by the transition function of the automaton:

∀e ∈ E, λ(e) := {a ∈ Σ | n[e] ∈ δ(p[e], a)}.

Notice the label of an edge e representing an absent transition in the automata (i.e.,
λ(e) = ∅) is labeled with the zero element of the semiring of formal languages and can be
considered as a missing edge. Let us now come back to a bottom-up definition of regular
languages, as languages built from finite set of words using ∪, ·, and ∗ operators. To
avoid dealing with infinite sets of words, we can alternatively consider regular expressions
to describe the operators instead of evaluating them.
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The well-known Bellman-Ford algorithm [Bellman 1958] led to a dynamic program-
ming formulation of the shortest-path problem using a system of equations (functional
equation approach). In the following, we will exhibit the system of equations expressing
the shortest path constraints for a weighted graph and the system of equations defining
the regular language of a given automaton. These two problems have been acknowledged
in [Rote 1990] to be both expressible as equational systems over closed semirings.

xij =
n⊕

k=1
(lik ⊗ xkj) for all i ̸= j,

xii =
n⊕

k=1
(lik ⊗ xkj)⊕ 1̄

(2.2)

In Equation 2.2 the xij variables denote, depending on the problem:
• the shortest-path between vertices i and j, using a Tropical semiring;

• the language recognized by an automaton from state i to state j, using FΣ.
Thus, in both cases, computing the aggregated labels defined by Equation 2.1 is the
same as solving the system of equations displayed as Equation 2.2. The latter equation
becomes X = AX ⊕ I in matrix notation and its solution, the star of the matrix A, is
denoted A∗.

Algorithm 2 then provides a constructive proof that the accepted language of an
automaton is regular (by taking the union of all returned values ln

qoqF
for each qF ∈ F})

and this is in fact one half of the famous Kleene’s theorem [Sakarovitch 1987] stating
the equivalence between finite automata and regular expressions. Understood in terms
of semirings, this means that the entries of the star of a matrix over closed semirings are
regular combinations of the entries of the initial matrix (Theorem 5 in [Conway 1971,
Chapter 3]).

From an equational perspective, the first part of Arden’s lemma [1961] turns out to
be implied by the properties of closed semirings (see Property 2.10). Thus, the iterative
application of Arden’s lemma for solving an equational system (known as the Brzo-
zowski and Mc Cluskey method [1963]) under the formal language semiring generalizes
to arbitrary closed semirings.
Property 2.10 (Theorem 3 in [Conway 1971, Chapter 3]). In a closed semiring a∗b is
the least solution to x = ax⊕ b.

2.1.2. Other Related Problems
So far, we exemplified the algebraic path problem using concrete applications arising
from graph theory (transitive closure, all-pairs shortest paths) or formal language theory
(equivalent language of an automaton). The intended result was simply obtained from
solving Equation 2.1 without further operations over the aggregated labels. In fact, the
range of applicability of such framework is much broader if we allow to “query” the
aggregated labels. We will not cover in detail all of the possible applications, instead,
we carefully select and briefly cover two use cases.
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Testing if a graph is bipartite [Rote 1990] Let us work on the set S = {∅, E, O, EO}
which records for sets of paths if they contain only even paths, odd paths, or both.
We label edges with O or ∅ depending on whether they are present or not in the
graph. We can munish S with suitable definitions for operators ∪, ·, and ∗ encod-
ing the desired semantic and satisfying the semiring axioms. The semiring of use is thus
({∅, E, O, EO},∪, ·, ∅, EO).

By inspecting all ln
ii returned by Algorithm 2, we can check if a directed graph has an

even cycle. Moreover, this definition permits to count path length modulo 2 and can
clearly be extended to modulus counting over an arbitrary integer k ≥ 2. It is then
possible to compute shortest-path of length m mod k if whoever wants to.

Note. The semiring-based provenance framework for graph databases we have stud-
ied during this PhD subsumes completely those results pointed out by Rote [1990] to
arbitrary regular constraints (RPQs) over paths. We refer the reader to the extended
discussion around this at the end of Section 4.3.

Finding the bridges of a graph [Rote 1990] A bridge is an edge in a graph G = (V, E)
whose removal breaks a connected component into two connected components. We
introduce the semiring (2E ∪ {0̄},∩,∪, 0̄, ∅) with underlying set the subsets of E with
one fresh new zero element 0̄. Semiring axioms completely determine how 0̄ interacts
with the other elements. We label an edge e of the graph with the set {e}, and with 0̄
if it was missing. Equation 2.1 then gives:

lij =
⋂

π∈Pij(G)

⋃
e∈π

λ(e).

Edges in lij are shared amongst all paths from i to j and are then bridges. Conversely,
any bridge appears in at least one set lij.

The new element was added to distinguish between the cases where all edges are
bridges and where the two vertices are not connected. Such an idea to create a new 0̄
element is quite commonly encountered in semiring theory and is know as the one-point
closure, as we will see some other examples later on (e.g., Section 2.2.1).

These annotations have been called aggregated labels up to this point. We will pro-
vide more context to these annotations in Part II and introduce a unifying framework
providing a concise semantic for querying graph databases. All the intuitions described
there will continue to apply to this next framework.

We hope to have properly introduced to the reader this bird’s-eye view using algebraic
patterns providing unifying frameworks for what are, at first glance, unrelated problems.
This constitutes, to my own point of view, the essence of the usage of semirings in
computer science research.
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2.2. Infinite Sums and Continuous Operators in
Semirings

The provenance semiring framework of Green et al. [2007], introducing semirings to
represent provenance annotations in relational databases (and beyond), relies on the
notion of ω-continuity, a property of some semirings we informally justify now and
later formally define. The provenance of a Datalog query in their line of work is then
defined as the least fixpoint of a system of fixpoint equations over ω-continuous semirings.
Continuous structures are of choice in this context because permitting to define an
iterative algorithm to solve the system and to obtain the least fixpoint.

Weaker semiring structures than the continuous ones are also relevant to the prove-
nance context, and we have dealt with many of them during the PhD. In the following, we
introduce the reader to the most crucial semiring structures, in increasing order of com-
plexity. We eventually reach the ω-continuous structure at the basis of the provenance
framework and study their properties pertaining to the resolution of fixpoint equations.

When adapting this definition to graph databases, more akin to semiring-valued ma-
trices, we eventually noticed strong similarities with other research areas in computer
sciences, such as the algebraic path problem, formal languages, weighted automata, and
even linear algebra and the fundamental algorithmic framework of dynamic program-
ming (understood as discrete optimization problems). Each of these research areas have
their own theoretical line of work in which semirings play a crucial role. By the end of
this section, the reader will also have an overview of semirings and their applications,
and will understand how the underlying theoretical framework for this doctoral work is
positioned across the computer science literature.

The amount of textbooks, research papers, definition, properties, etc, covered in this
“survey” is large, but it is by no mean supposed to be exhaustive. A lot of the knowledge
acquired by the author during this thesis is not presented here, as we have chosen to only
introduce notions that have eventually found some concrete practical application during
this PhD. As a summary for this section, Table 2.1 provides a translation between the
semiring structure names encountered in the literature and our nomenclature.

We start with the notion of embedding that will be key for our work. We are generally
interested to find an embedding of S into T , with T enriching the structure of S. T will
have the property of interest, for instance, to justify the use of an algorithm requiring
this property to hold. Morphism properties permit to avoid doing computations over T ,
and still be performing computations over the simpler structure of S, thus leading to a
possibly more efficient implementation.

Definition 2.11 (Embedding). A semiring S is said to be embedded into a semiring
T whenever S is isomorphic to a subsemiring of T , or equivalently, if there exists an
injective semiring morphism from S to T .

Rationale. Throughout this thesis, we were constantly searching for a consistent way to
define and name the semirings of interest for our research work. Following the proposition
made by Kozen [1990], we could use an alternative name for the closed semirings from
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Definition 2.5. Kozen has proposed ω-complete idempotent semirings but we find ω-
continuous idempotent star semirings is a better name. The bulk of this section is to
convince the reader of the necessity of this nomenclature. In fact, the sole purpose
of
∑

in Definition 2.5 was to define ∗, so we use the term “star” in ω-continuous
idempotent star semirings to stress the fact we use the infinite summation operator
to define the star of an element to be the sum of its powers. We now introduce in
increasing order of specificity the notions of star semirings (Section 2.2.1), complete
semirings (Section 2.2.2), and continuous semirings (Section 2.2.4).

2.2.1. Towards the Simplest Notion of a Closure Operator
This section refers to what has previously been called closed semirings

in [Lehmann 1977] (but here we assume the presence of a 0̄ element) and
∗-semirings in [Abdali 1994; Abdali et al. 1985]. A more in-depth analysis

of such structures and algorithms can be found in [Minoux et al. 2008].

Definition 2.12 (Star semiring [Abdali et al. 1985], and under the name of closed semir-
ing [Lehmann 1977]). A star semiring is a structure (S,⊕,⊗,∗ , 0̄, 1̄) where (S,⊕,⊗, 0̄, 1̄)
is a semiring and ∗ satisfies additional axioms:

1̄⊕ aa∗ = 1̄⊕ a∗a = a∗.

This is the most basic structure where we can define an asterate a∗ (also known as a
closure) for its elements. We also note a+ = aa∗ = a∗a. In [Abdali 1994; Abdali et al.
1985] the structure may not be closed for the asteration (i.e. ∗ might be a partial func-
tion). Nevertheless, the one-point-closure (adding a new element ∞ to be the asterate
of each element for which the operator was not previously defined) can easily solve the
problem.

The classical axioms introduced thereafter permit to simplify the reasoning on the
properties of star semirings and the other more sophisticated structures occuring in this
manuscript.

Definition 2.13 (Classical axioms [Conway 1971, pp. 25, 35]).

C1. a⊕ 0̄ = a;

C2. a⊕ b = b⊕ a;

C3. (a⊕ b)⊕ c = a⊕ (b⊕ c);

C4. a⊗ 0̄ = 0̄;

C5. 0̄⊗ a = 0̄;

C6. a⊗ 1̄ = a;

C7. 1̄⊗ a = a;

C8. a(b⊕ c) = ab⊕ ac;

C9. (b⊕ c)a = ba⊕ ca;

C10. a(bc) = (ab)c;

C11. (a⊕ b)∗ = (a∗b)∗a∗;

C12. (ab)∗ = 1̄⊕ a(ba)∗b;

C13. (a∗)∗ = a∗;

C13◦. 1̄∗ = 1̄;
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C14. a∗ = (an)∗ ⊕ (1̄⊕ a⊕ · · · ⊕ an−1);

C15. 1̄⊕ aa∗ = a∗;

C19. 0̄∗ = 1̄.

It is not required for ⊗ to be commutative, neither for ⊕ to be idempotent. The sum-
star equation (C11) and the product-star equation (C12) are also not required (neither
are C13 and C14). Star semirings verify the first ten “classical” axioms (basic semiring
axioms) plus, by definition, axiom C15. C19 also holds in star semirings and is deduced
from C15.

The primary interest of those structures is to consider computations over their asso-
ciated matrices. There are two equivalent definitions of such matrices, one by induc-
tion [Lehmann 1977] and the other one involving eliminants [Abdali 1994; Abdali et al.
1985]. We will only discuss the inductive definition as the other one mainly focuses on
providing a suitable definition for parallel computations.

Definition 2.14 (Matrices over star semirings [Lehmann 1977]). Given a star semiring
S and a positive integer n ≥ 1 we define the set Sn of n× n matrices over S with:

0̄Sn =


0̄ · · · 0̄
... . . . ...
0̄ · · · 0̄

, 1̄Sn =


1̄ · · · 0̄
... . . . ...
0̄ · · · 1̄

, for A = [aij]i,j∈[1,n] and B = [bij]i,j∈[1,n]:

A⊕B = [aij ⊕ bij]i,j∈[1,n] and A⊗B =
[

n⊕
k=1

(aik ⊗ bkj)
]

i,j∈[1,n]
,

for n = 1: A∗ = [a∗] and for n ≥ 2 and any subdivision of A =
[
B C
D E

]
where B and E

are square matrices:

A∗ =
[
B∗ ⊕B∗C∆∗DB∗ B∗C∆∗

∆∗BD∗ ∆

]
with ∆ = (E ⊕DB∗C)∗.

Property 2.15 ([Lehmann 1977]). For all n ≥ 1, (Sn,⊕,⊗,∗ , 0̄Sn , 1̄Sn) are star semir-
ings.

A wise reader will notice the top-left cell of A∗ is not simplified to (B⊕CE∗D)∗. In fact
this simplification can be done if and only if the Conway equalities (see Definition 2.16)
hold [Lehmann 1977].

Definition 2.16 (Conway semiring [Droste et al. 2009]). A conway semiring is a semir-
ing satisfying the sum-star equation (C11) and the product-star equation (C12) or, equiv-
alently, a star semiring satisfying (a⊕ b)∗ = (a∗b)∗a∗ and (ab)∗a = a(ba)∗.

Property 2.17 ([Conway 1971, p. 35]). In star semirings C13 implies C13◦. In Conway
semirings C13 is equivalent to C13◦. Moreover, all idempotency laws 1̄⊕ 1̄ = 1̄ (C21),
a⊕a = a (C22), (1̄⊕a)∗ = a∗ (C23), and a∗a∗ = a∗ (C24) follow from C13◦ in Conway
semirings.

Let us now turn our attention to the analogous form of Algorithm 2, stated in terms
of matrix operations. Here, star semirings play the role of the most general algebraic
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structure on which an asteration of matrices can be defined. A very curious reader could
also find a valuable insight in [Minoux et al. 2008, Chapter 4.5] on how this method can
be understood as a generalization of the Gauss-Jordan method in linear algebra.

Algorithm 3 Warshall–Floyd–Kleene [Lehmann 1977] – Asteration of a matrix
Input: A = A[i, j]i,j∈[1,n] a matrix over a star semiring S.
Output: The closure A∗ of A.

1: A0 = A
2: for k ← 1 to n do
3: for i ∈ [1 . . . n] do
4: for j ∈ [1 . . . n] do
5: Ak[i, j] = Ak−1[i, j]⊕ (Ak−1[i, k]⊗ (Ak−1[k, k])∗ ⊗ Ak−1[k, j])
6: end for
7: end for
8: end for
9: A∗ = An ⊕ 1̄Sn

Finally, the last interesting usage of star semirings we touch on is the possibility
to solve systems of equations [Abdali 1994]. In this case, a∗ is not necessarily the
unique solution to x = 1̄ ⊕ ax, and neither is a∗b to x = ax ⊕ b. We provide at the
end of this section an example (related to Semiring 7) were an alternative definition
of the ∗ operator leads to another solution to these equations. Historically, complete
and continuous semirings we discuss later have been introduced to provide additional
contraints to star semirings in order to restrict the asterates to be the least solutions to
such systems of equations.

As a final remark before providing examples of star semirings, we stress the fact they
are not necessarily commutative, thus leading to different possible solutions to left and
right-handed systems of equations.

Examples.

Semiring 5 (Security semiring). The semiring ({0, . . . , n}, min, max, n, 0) with a∗ = 0
for all a.

Also exists in the (max, min) variant, and over N or R. It turns out (max, min) and
(min, max) are both distributive lattices with reversed meet and join operations.

Semiring 6 (Reliability semiring [Rote 1990]). The semiring ([0, 1], max, ·, 0, 1) with
a∗ = 1 for all a.

Semiring 7 (The idempotent commutative semiring – Example (ix) in [Droste et al.
2009, p. 9]). The semiring ({0, 1, a,∞}, +, ·, 0, 1) with 0 ≤ 1 ≤ a ≤ ∞, a ·a = a, 0∗ = 1,
1∗ = 1, a∗ =∞, and ∞∗ =∞.

Semiring 8 (Real numbers semiring). The semiring (R∪ {∞}, +, ·, 0, 1) with a∗ = 1
1−a

when |a| < 1 and 1∗ =∞ either.
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All previous introduced closed semirings (Semirings 1, 2, 3, and 4) are also star semir-
ings using the

∑
-based definition of the star operator. Semirings 5, 6, 7, and 8 are

also star semirings. It also exists for Semirings 5 and 6 a proper infinite summation
operator compatible with the star. An alternative definition for a∗ := a in Semiring 7
also provides a solution to 1̄ ⊕ ax = x, with a ≤ ∞. Semiring 8 is in fact a ring and
we will see right after it is not possible to embed any ring into a complete semiring and
thus, to any closed semiring.

2.2.2. Completeness: Working with an Infinite Summation
Operator

This section refers to complete semirings of Krob [1987], Goldstern [2002], and in
[Droste et al. 2009; Eilenberg 1974; Kuich 1997]. ω-Complete structures appear

under the name of closed semirings in [Mehlhorn 1984, Chapter 5.1].

Definition 2.18 (Complete monoid [Krob 1987]). Let (M,⊕, 0̄) be a commutative mo-
noid, M is a complete monoid (resp. ω-complete monoid) if for every (resp. at most
countable) family set I of elements of M we can define an element ⊕

i∈I
xi satisfying:

1. if I is empty: ⊕
i∈∅

xi = 0̄;

2. if I is non-empty finite: ⊕
i∈{1, ..., n}

xi = x1 ⊕ · · · ⊕ xn;

3. for every (resp. at most countable) index set I and every partition J of I:

⊕
i∈I

xi =
⊕
j∈J

⊕
i∈Ij

xi

 .

Definition 2.19 (Complete semiring [Krob 1987]). Let (S,⊕,⊗, 0̄, 1̄) be a semiring, S
is a complete semiring (resp. ω-complete semiring) if for every (resp. at most countable)
family set I of elements of S we can define an element ⊕

i∈I
xi satisfying:

1. (S,⊕, 0̄) is a complete (resp ω-complete) monoid;

2. for every (resp. at most countable) index set I and every s ∈ S: s ⊗
(⊕

i∈I
xi

)
=

⊕
i∈I

(s⊗ xi) and
(⊕

i∈I
xi

)
⊗ s = ⊕

i∈I
(xi ⊗ s) .

We provide basic properties of complete semirings, Property 2.20 establishes the link
to the definition of complete semirings from Goldstern [2002] and Property 2.21 the link
to the definition from the Melhorn’s book [1984, Chapter 5.1].
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Property 2.20 ([Krob 1987]). Let (S,⊕,⊗, 0̄, 1̄) be a complete semiring (resp. ω-
complete semiring) for every (resp. at most countable) family set I of elements of S
we have: ⊕

i∈I

0̄ = 0̄.

Property 2.21 ([Krob 1987]). Let (S,⊕,⊗, 0̄, 1̄) be a complete semiring (resp. ω-
complete semiring), we have for every (resp. at most countable) family set I and J :

(⊕
i∈I

xi

)
⊗

⊕
j∈J

xj

 =
⊕

(i,j)∈I×J

(xi ⊗ xj) .

The next properties entail the fact that complete semirings are instances of star semir-
ings and permit us to get a formal viewpoint via the equalities satisfied by such struc-
tures.

Property 2.22 (Theorem 2.2 in [Kuich 1997]). Each complete star semiring is a star
semiring and satisfies a∗ = (an)∗ ⊕ (1̄⊕ a⊕ · · · ⊕ an−1), for n > 0 (C14).

Property 2.23 (Theorem 3.4 in [Droste et al. 2009]). Each complete star semiring is a
Conway semiring.

To sum up the results of Properties 2.22 and 2.23 in terms of classical axioms, we can
say that complete semirings verify all the classical axioms presented in Definition 2.13,
excepting C13 and C13◦.

It is claimed in [Droste et al. 2009, Chapter 1] that matrices over complete semirings
are themselves complete and similarly for matrices over Conway semirings.

In the following, an embedding of complete semirings is a semiring embedding ϕ pre-
serving the additional structure of

∑
: ϕ

(∑
A
)

=
∑

ϕ(A). All complete semirings are
ω-complete but the opposite does not hold (Krob provides an example in [1987]). Never-
theless, we will now turn our attention on an elementary property of complete semirings
which will ultimately lead to an embedding of ω-complete into complete ones.

Property 2.24 (Zero-sum free [Krob 1987]). Let (S,⊕,⊗, 0̄, 1̄) be an ω-complete semir-
ing, for all x, y ∈ S, x⊕ y = 0̄ =⇒ (x = 0̄ ∧ y = 0̄).

Property 2.24 entails the fact non-trivial rings can neither be ω-complete nor can be
embedded inside larger ω-complete semirings. This fact also rules out rings from the
lower bounds on monotone operations over matrices (Section 2.3).

Definition 2.25 (Positive semiring [Krob 1987]). A semiring (S,⊕,⊗, 0̄, 1̄) is said pos-
itive when:

1. for all x, y ∈ S, x⊕ y = 0̄ =⇒ (x = 0̄ ∧ y = 0̄);

2. for all x, y ∈ S, x⊗ y = 0̄ =⇒ (x = 0̄ ∨ y = 0̄).
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Semiring 9. The semiring (2N,∪,∩, ∅,N) where ∪ denote arbitrary union and ∩ finite
intersection.

Semiring 9 provides an example of a complete semiring not being positive: N∗ ∩
{0} = ∅. In [Krob 1987] one can find a construction to embed any positive semiring
(S,⊕,⊗, 0̄, 1̄) into a complete semiring by adjoining an infinite element ∞, absorptive
for ⊕ and for ⊗ (except for 0̄: 0̄⊗∞ =∞⊗ 0̄ = 0̄), and define for any I:

⊕
i∈I

xi :=


∞, if J = {i ∈ I | xi ̸= 0̄} is infinite,⊕
j∈J

xj, otherwise.

Semiring 10 (Complete version of Semiring 7). The semiring ({0, 1, a,∞}, +, ·, 0, 1)
with 0 ≤ 1 ≤ a ≤ ∞, a · a = a, 0∗ = 1, 1∗ =∞, a∗ =∞, and ∞∗ =∞.

Important note. Sometimes this infinite summation operator does not convey much
interest. As exemplified in Semiring 10, fixing all sums involving an infinite number of
non-zero elements to a new ∞ element provides a suitable definition for a summation
operator. Such examples of semiring structures satisfying all formal axioms on a∗ for
an element a, on the other hand not representing the intuitive idea of the supremum of
the powers of the element, is very common in the literature: an example of such is the
four-element R-algebra1 R4 of Conway [1971, p. 102] which is not an S-algebra. This
ultimately leads us to a discussion on continuous semirings.

Examples.

Semiring 11 (Integers semiring [Droste et al. 2009]). The semiring (N∪{∞}, +, ·, 0, 1)
with 0∗ = 1 and a∗ =∞ either.

Semiring 12 (Positive real numbers semiring [Droste et al. 2009]). The semiring
(R+ ∪ {∞}, +, ·, 0, 1) with a∗ = 1

1−a
when a < 1 and 1∗ =∞ either.

Semiring 4 is also a complete semiring which is not commutative. Semirings 11 and 12
are complete and non-idempotent. We acknowledge the fact that R4 and Semiring 7 are
actually isomorphic. A work of note is the possibility to extend a ring into a com-
plete semiring (refer to Example 2.2 from [Karner 1992]) which shows there exist some
complete semirings which are not orderable).

2.2.3. Case Study of Closed Semirings and S-Algebras
This section mainly refers to the S-algebras of Conway [1971].

It is also partially covered how S-algebras and closed semirings
relate to each other using the results from Kozen [1990].

1Formal systems with operators ⊕, ⊗ and ∗ satisfying formal laws universally valid in all S-
algebras [Conway 1971, Chapter 4].
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We now tackle an ubiquitous inconsistency (or hiatus) in the literature. Many authors
such as Krob [1987], Droste et al. [2009] and Kozen [1990] strongly suggest the S-algebras
of Conway are an alternative name for complete semirings (in fact Kozen uses the name
closed but ended up naming them complete idempotent semirings). Whereas for Kozen
an S-algebra is necessarily idempotent, it is not the case for Krob and Droste et al. That
is already suspicious. So, one can ask a question: what really are S-algebras? Let us
take a closer look at their definition in [Conway 1971].

Definition 2.26 (S-algebra [Conway 1971]). An S-algebra is a set S with three opera-
tions defined on it

∑
, ⊗, and ∗, and two particular elements 0̄ and 1̄, such that:

S1.
∑
i∈I

0̄ = 0̄;

S2.
∑
i∈I

si =
∑
j∈J

∑
i∈Ij

si

 ,
⋃

j∈J
Ij = I;

S3. 1̄⊗ s = s⊗ 1̄ = s;

S4. (r ⊗ s)⊗ t = r ⊗ (s⊗ t);

S5.
(∑

i∈I

si

)
⊗

∑
j∈J

sj

 =
∑

(i,j)∈I×J

(si ⊗ sj);

S6. s∗ =
∑

si.

One can thus define the ⊕ operator to retrieve a semiring structure: s0⊕s1 =
∑

i∈{0,1}
si.

Taking a look at S2, not requesting the union to be disjoint seems to be an oversight.
By fixing the definition adding this requirement, one can obtain the classical definition
for complete semirings. Following the many previously mentioned authors, this has been
my first belief. But this strong misunderstanding leads to many incoherences. Because
the classical axioms must hold in S-algebras (acknowledged by Conway [1971, p. 28]),
we deduce the validity of a ⊕ a = a by using C13. We recall Semirings 11 and 12 are
complete but not idempotent. Now, if the structure satisfies a⊕ a = a, is it always the
case for

∑
a = a? Surely not because of Semiring 7 (aka. R4). In fact, by analyzing

Theorem 2 in [Conway 1971, Chapter 3] we observed it was admitted in the proof that
idempotence extends to infinite sums. And this is precisely what we can deduce from a
strict interpretation of the definition (not requiring the Ij to be all disjoint).

Property 2.27 (Finite and infinite idempotence). For any finite or infinite index set I
the following holds for S-algebras: ∑

I

a = a.

Proof. Let I = {1} and s1 = a. For any finite or infinite index set J with Ij = {1} for
all j ∈ J , we deduce using S2,

∑
J

a = a.

It is now clear that closed semirings of Definition 2.5 and the S-algebras are almost
identical structures. The only difference lies in the fact infinite sums are only defined
for countable sequences for closed semirings. We now study the shared properties of

∑
in both cases. Since

∑
is associative, commutative, and idempotent, it might as well

be defined on finite or infinite subsets of S.
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Property 2.28 ([Kozen 1990], Theorem 2 in [Conway 1971, Chapter 3]). In closed
semirings (resp. S-algebras),

∑
A = sup≤ A.

Proof. Upper bound: if x ∈ A, then x ⊕
∑

A =
∑

A ∪ {x} =
∑

A thus x ≤
∑

A.
Supremum: if x ≤ y for all x ∈ A, then x⊕ y = y for all x ∈ A, so(∑

A
)
⊕ y =

(∑
x∈A

x

)
⊕
(∑

x∈A

y

)

=
∑
x∈A

(x⊕ y)

=
∑
x∈A

y

= y, then
∑

A ≤ y.

Property 2.29 (Theorem 3 in [Conway 1971, Chapter 3]). In closed semirings (resp.
S-algebras), a∗b is the least solution to x = ax⊕ b.

Property 2.30 (Theorem 4 in [Conway 1971, Chapter 3]). If A =
[
B C
D E

]
is a matrix

over a closed semiring (resp. S-algebra) then A∗ =
[
(B ⊕ CE∗D)∗ B∗C∆∗

∆∗BD∗ ∆

]
with ∆ =

(E ⊕DB∗C)∗.

Let us now make a short discussion about the slight differences between the first
two algorithms. Algorithm 2 working over closed semirings computes (1̄Sn ⊕ A)+ the
transitive (but not reflexive) closure of the matrix 1̄Sn⊕A, whereas Algorithm 3 working
over star semirings computes 1̄Sn ⊕A+ = A∗. This is due to the fact that because C13◦

holds for closed semirings and closed semirings are Conway semirings, then (1̄Sn⊕A)+ =
(1̄Sn ⊕ A)∗ = A∗ follows from Property 2.17.

Semiring 13 (Continuous version of Semiring 7). The semiring ({0, 1, a,∞}, +, ·, 0, 1)
with 0 ≤ 1 ≤ a ≤ ∞, a · a = a, 0∗ = 1, 1∗ = 1, a∗ = a, and ∞∗ =∞.

2.2.4. Continuity: Constraining to Least Solutions
In this section we review the notions of continuity and finitariness

from [Goldstern 2002; Karner 1992; Krob 1988]. We also link to
other resources in the literature where equivalent definitions for

continuity have been provided such as in [Kuich 1997, Theorem 2.3].

As we said before, we want to be able to use non-idempotent semirings in our settings.
Thus, we need to come up with a new approach preserving Properties 2.28, 2.29, and 2.30.
Restricting to least solutions of equational systems impose to have a notion of ordering
inside the semiring. Structures proposed in the literature intersect both notions of
complete and ordered semirings.
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Definition 2.31 (Ordered semiring [Goldstern 2002]). An ordered semiring is a semir-
ing (S,⊕,⊗, 0̄, 1̄,⪯) where ⪯ is a partial order, ⊕ and ⊗ are monotone in each argument,
and 0̄ is the least element.

An embedding of ordered semirings is a semiring embedding ϕ preserving the additional
structure of the order ⪯: a ⪯ b =⇒ ϕ(a) ⪯ ϕ(b). In Definition 2.31 the order is positive:
0̄ ⪯ a for all a ∈ S. There also exist orders on semirings which are not positive as it is
sometimes more convenient to work with a reversed order [Mohri 2002]. It is clear from
the definition that every positively ordered semiring is zero-sum free, but the reverse is
not true (see Example 2.2 from [Karner 1992]). In order to simplify things, Lemma 2.32
permits us to only consider the natural order ≤ when dealing with ordered semirings.

Lemma 2.32 ([Goldstern 2002]). Let (S,⊕,⊗, 0̄, 1̄) be a semiring, the following are
equivalent:

1. S can be embedded into an ordered semiring;

2. there exists a partial order on S making S an ordered semiring;

3. the natural pre-order is antisymmetric (i.e. a partial order);

4. for all s, x, y ∈ S: s⊕ x⊕ y = s implies s⊕ x = s.

Definition 2.33 (Finitary semiring [Goldstern 2002]). A complete ordered semiring
(S,⊕,⊗, 0̄, 1̄,⪯) is called finitary (resp. ω-finitary) when for every (resp. at most count-
able) index set I: ⊕

i∈I

ai = sup
⪯

⊕
i⊆F

ai | F ⊆ I finite

 . (2.3)

Definition 2.34 (Continuous semiring [Karner 1992]). A semiring is called continuous
(resp. ω-continuous) when it is finitary (resp. ω-finitary) with respect to the natural
order ≤.

There are various ways of introducing continuous semirings in the literature. In [Droste
et al. 2009; Krob 1988] the approach is to consider first continuous monoids (complete
and naturally ordered monoids satisfying Equation 2.3) and to request the semiring to
be as well complete for the infinite summation operator of the monoid (i.e., asking for
⊗ to be bicontinuous w.r.t

∑
). There are also many equivalent alternative definitions

for (ω-)continuous semirings, refer to [Kuich 1997, Theorem 2.3] for a compilation and
[Karner 1992, Proposition 5.6] for a characterization of (ω-)continuous not mentionning
any order.

The provenance semiring framework [Green et al. 2007] seems to follow a nomenclatura
for complete partial order (CPO) where complete (resp. ω-complete) means every chain
(resp. countable chain) has an upper bound. It is similar to the approaches from [Droste
et al. 2009; Krob 1988] for defining continuous semirings.

As we wanted, the analogous of Properties 2.28, 2.29, and 2.30 also hold for continu-
ous structures: Property 2.28 turns out to be already encompassed by the definition of
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continuity, Property 2.35 extends the result of Property 2.29 to finitary semirings, and
from [Droste et al. 2009, Theorem 3.4], we learn that each complete star semiring sat-
isfies the Conway’s equations, thus, Property 2.30 can be generalized to (ω-)continuous
semirings (Property 2.36).

Property 2.35 (Proposition 5.3 in [Karner 1992]). In a finitary semiring, a∗b is the
least solution (w.r.t the order ⪯) to x = ax⊕ b.

Property 2.36 (Matrices over continuous semirings). If A =
[
B C
D E

]
is a matrix over

a continuous semiring then A∗ =
[
(B ⊕ CE∗D)∗ B∗C∆∗

∆∗BD∗ ∆

]
with ∆ = (E ⊕DB∗C)∗.

In fact, idempotent semirings always have exactly one partial order: the natural or-
der [Karner 1992]. Thus, for idempotent semirings, finitariness coincides with continuity
and so, S-algebras and closed semirings are continuous (resp. ω-continuous).

We finally end this survey with some fundamental remarks.

Theorem 2.37 ([Goldstern 2002]). Let (S,⊕,⊗, 0̄, 1̄,⪯) be an ordered semiring. Then
there is a finitary (complete ordered) semiring S̄ such that S is embedded into S̄ as an
ordered semiring.

We have voluntarily eluded the many different notions of limits in semirings such as
d-complete, l-complete, and t-complete as long as only continuous semirings have been
studied for provenance annotations. Those notions can notably be found in [Goldstern
2002; Krob 1987; Krob 1988]. An extensive study with a schematic overview of how
they compare with each other and with complete and continuous semirings can be found
in [Karner 1992]. We now discuss on the assumption we can up-to-embedding always
assume working on a continuous structure.

Important note. The original version of Theorem 2.37 is in fact much stronger, but we
have not introduced the vocabulary from category theory on which the theorem statement
relies on to fully reproduce it there. It additionally mentions, every embedding of S
into a finitary semiring T eventually extends the embedding of S into S̄. It is worth
recalling a finitary semiring need not be necessarily continuous (e.g., [Karner 1992, Fact
5.1]). Moreover, the proof of Theorem 2.37 constructs S̄ as a quotient of a continuous
structure. We believe it could be possible to adapt the proof to turn the finitary structure
of S̄ into a continuous one. We will come back to this open question in Chapter 12.2.

2.2.5. Summary
Semirings 7, 10, and 13 examplified how given the same semiring we can modify the
definition of the ∗ operator to turn the semiring into a complete star structure with
all sums over an infinite number of non-zero elements being ∞ (resp. to a continuous
structure fixing the infinite sum to be the supremum of the sequence).

Table 2.1 provides a visual summary of the structures names occuring in the litera-
ture linked to their unified nomenclure name we choosed in this manuscript. Finally,
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Table 2.1.: Summary of the structure names occuring in the literature.
Book or paper Name of their structure Our name in this manuscript
Mehlhorn [1984] closed semiring ω-complete star semiring
Aho et al. [1974], closed semiring ω-continuous idemp. star semiring
Kozen [1990], and or closed semiring
Cormen et al. [1989]
Conway [1971] S-algebra continuous idemp. star semiring
Eilenberg [1974] complete semiring complete semiring
Krob [1987] (ω-)complete semiring (ω-)complete semiring
Krob [1988] (ω-)continuous semiring (ω-)continuous semiring
Droste et al. [2009] complete (star) semiring complete (star) semiring

continuous semiring continuous semiring
Kuich [1997] (ω-)continuous semiring (ω-)continuous semiring
Abdali et al. [1985] ∗-semiring star semiring
and Abdali [1994]
Lehmann [1977] closed semiring star semiring
Goldstern [2002] finitary semiring finitary semiring
Karner [1992] finitary semiring finitary semiring

closed
APP

Eq. system

ω-continuous
Fixed points

Least solutions

ω-complete
star semirings
Lower bounds

Conway semirings

star semirings
Matrix asteration

Parallelism via Eliminants

semirings

Figure 2.1.: Summary of the theoretical structures along with their key properties or
usages.

Figure 2.1 indicates what are the key properties of the structures we studied in this
chapter.
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2.3. Theoretical Bounds
We have seen so far computing the asteration of a semiring-valued matrix is key for
solving a vast amount of different problems. In particular, solving a system of linear
equations over a star semiring consists in computing the asterate of the coefficient ma-
trix [Abdali 1994; Minoux et al. 2008]. The Kleene method (Algorithms 2 and 3) provides
a cubic time method for doing so. We now introduce in Section 2.3.1 a fundamental re-
sult relating the complexity of matrix multiplication to the complexity of the asteration
of a matrix, and in Section 2.3.2 we provide a lower-bound on the monotone complexity
of matrix multiplication. Thanks to Section 2.2, we deduce by the end of the discussion
a nice up-to-embedding characterization for the semirings on which this limitation holds.

2.3.1. On the Complexities of Matrix Multiplication and Matrix
Asteration

Let A and B two n × n matrices over an ω-complete star semiring S. For the rest of
the section the semiring S will be assumed to be ω-complete. The following lemma
shows how to encode the matrix multiplication of A and B into the asteration of a third,
carefully designed, matrix C.

Lemma 2.38 ([Mehlhorn 1984]). Let us consider the following (3n× 3n) matrix

C =

0̄Sn A 0̄Sn

0̄Sn 0̄Sn B
0̄Sn 0̄Sn 0̄Sn

, then C∗ =

1̄Sn A AB
0̄Sn 1̄Sn B
0̄Sn 0̄Sn 1̄Sn

.

Proof. C0 =

1̄Sn 0̄Sn 0̄Sn

0̄Sn 1̄Sn 0̄Sn

0̄Sn 0̄Sn 1̄Sn

, C2 =

0̄Sn 0̄Sn AB
0̄Sn 0̄Sn 0̄Sn

0̄Sn 0̄Sn 0̄Sn

, and for k > 2: Ck = 0̄S3n .

Theorem 2.39 (Theorem 5.2 in [Mehlhorn 1984]). If an algorithm computes the closure
of a matrix using A(n) semiring operations, then the multiplication of two n×n matrices
can be computed with M(n) = O(A(n)) semiring operations.

When referring to semiring operations, we either mean ⊕, ⊗, or ∗. Quite surprisingly,
the reverse also holds: we can reduce matrix asteration to many matrix multiplications
under the same global amount of semiring operations performed.

Lemma 2.40 ([Mehlhorn 1984]). If A =
[
B C
D E

]
is an n×n matrix over an ω-complete

star semiring then A∗ =
[
F G
H K

]
with F = (B ⊕ (CE∗D))∗, G = FCE∗, H = E∗DF ,

and K = E∗⊕ (E∗DFCE∗). All of which are n
2 ×

n
2 square matrices. Moreover, A∗ can

be computed using 2 additions, 2 closures, and 6 multiplications over n
2 ×

n
2 matrices.
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Proof. The rough ideas for obtaining such identities are explained in the book. Formally,
they can be deduced from the classical axioms universally valid in ω-complete star semir-
ings. The following straight-line program computes F , G, H, and K by reusing common
subexpressions:

T1 ← E∗

T2 ← CT1

F ← (B ⊕ (T2D))∗

G← FT2

T3 ← T1D

H ← T3F

K ← T1 ⊕ (T3G)

Theorem 2.41 (Theorem 5.3 in [Mehlhorn 1984]). If the product of two n×n matrices
can be computed with M(n) additions and multiplications of semiring elements, then the
closure of an n× n matrix can be computed with A(n) = O(M(n)) semiring operations.

Theorem 2.39 together with Theorem 2.41 establish that matrix multiplication and
matrix asteration over an ω-complete star semiring have the same order of complexity.
To establish lower bounds related to matrix asteration under our semiring framework,
we can now focus on the complexity for matrix multiplication.

2.3.2. Lower Bounds
The proof of Lemma 2.40 has already made use of straight-line programs [Mehlhorn
1984]. Those programs are restricted programs with no loop and no conditional state-
ment. All the previous algorithms can be seen as such kind of programs restricting to
fixed input size and duplicating code inside iteration loops. The structure of a straight-
line program is in one-to-one correspondance with a circuit representation in which gates
indicate performed operations and leaves the initial data.

A monotone straight-line program restricts to monotone operations: in our case ⊕
and ⊗ for any semiring. This rules out for example the negation operator when dealing
with boolean values, negative values in the reals, or more generally the inverse operator
in any ring.

Theorem 2.42 (Theorem 5.4 in [Mehlhorn 1984]). Let (S,⊕,⊗, 0̄, 1̄) be a zero-sum free
semiring. Any straight-line program which computes the (r, p, q) matrix product of two
matrices over S using only ⊕ and ⊗ has at least r · p · q multiplications and r · (p− 1) · q
additions. Moreover the näıve definition of such product is optimal.

Original version of Theorem 2.42 requires semirings of characteristic zero: 1̄⊕· · ·⊕1̄ ̸=
0̄ for any number of one to be added, instead of zero-sum free semirings. It is clear that
any zero-sum free semiring is of characteristic zero.
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Provenance

The considerable generalization power associated with semiring structures found a no-
table application in database systems. Many different notions of annotated relations
concerning incomplete and probabilistic databases [Imieliński et al. 1984; Fuhr et al.
1997], lineage [Cui et al. 2000], and bag semantics have all been shown to be expressible
using commutative semirings [Green et al. 2007].

In the following, we provide an overview of the seminal paper of [Green et al. 2007], and
discuss on the key ideas introduced there. It starts with the definition of provenance
for positive relational algebra queries, and extends this to Datalog queries. Here, we
emphasize Datalog provenance, as it was one of the main focuses of this thesis, but
we will also shortly touch on the non-recursive case. We then focus on the notion of
provenance semirings in [Green et al. 2007], which allows for a symbolic representation
of the provenance.

3.1. System of Fixpoint Equations
A system of fixpoint equations over an ω-continuous semiring S is a finite set of equations:
X1 = f1(X1, X2, . . . , Xn), . . . , Xn = fn(X1, X2, . . . , Xn), where X1, . . . , Xn are variables
and f1, . . . , fn are polynomials with coefficients in S. We extend the notion of natural
order from semiring elements to tuples of semiring elements by simply considering the
product order. We then have the following on solutions of a system of equations over
an ω-continuous semiring:

Theorem 3.1 (Theorem 3.1 of [Kuich 1997]). Every system of fixpoint equations X =
f(X) over a commutative ω-continuous semiring has a least solution lfp(f) w.r.t. ≤,
and lfp(f) is equal to the supremum of the Kleene sequence: lfp(f) = supm∈N fm(0̄).

3.2. Datalog Provenance
Let us now recall our running example – Example 1.1 – from Section 1.2.1, but this time
with labels (semiring values) over the EDB facts. The provenance for an IDB tuple is then
the sum for each of its derivation trees, of the product of the provenance annotations
associated to each leaf of the tree. This is exemplified in Figure 3.1 (an incremented
version of Figure 1.1) featuring provenance annotations over the tropical semiring.
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Definition 3.2 (Proof-theoretic definition for Datalog provenance [Green et al. 2007]).
Let (S,⊕,⊗, 0̄, 1̄) be a commutative ω-continuous semiring and q a Datalog program
with output predicate T and such that all extensional facts R(t′) are annotated with an
element of S, denoted as provq

R(t′). Then the provenance of T (t) for q, where T (t) is in
the output of q, is defined as:

provq
T (t) =

⊕
τ yields t

 ⊗
t′∈ leaves(τ)

provq
R(t′)

 .

This definition is well-founded using any commutative semiring for union of conjunc-
tive queries (i.e., non-recursive queries), but in case of recursivity, a tuple can have
infinitely many derivation trees. In this case, we need to consider specific semirings to
properly deal with those infinite sums. The choice made in [Green et al. 2007] for Defi-
nition 3.2 is to consider commutative ω-continuous semirings following formal language
theory [Kuich 1997].

Example 3.3. The tropical semiring is (R+∪{∞}, min, +,∞, 0). We show in Figure 3.1
an example Datalog program (right) with tropical semiring annotations on extensional
facts, as well as the (only) two derivation trees of the fact path(Paris, London) along their
weight. This witnesses that the provenance of path(Paris, London) is min(1, 3) = 1.

path(Paris, London) 3

edge(Paris, London) 3

dummy

r1

path(Paris, London) 1

path(Paris, Lille) 1

edge(Paris, Lille) 1
r1

edge(Lille, London) 0
r2

edge(Paris, London) :- 3
edge(Paris, Lille) :- 1

edge(Lille, London) :- 0
path(x, y) :- edge(x, y) r1

path(x, y) :- path(x, z),
edge(z, y) r2

Figure 3.1.: Derivation trees along their weights for the fact path(Paris, London) using
the transitive closure Datalog program over the tropical semiring with an
EDB containing 3 facts

Since some tuples can have infinitely many derivations, hence the Datalog semantics
given above cannot be used as an algorithm. As pointed out in [Green et al. 2007] it
is possible instead to use a fixpoint-theoretic definition of the provenance of a Datalog
query q: introduce a fresh variable for every possible intensional tuple (i.e., every possible
ground atom), and produce for this variable an equation that reflects the immediate
consequence operator Tq – extensional facts appearing as their semiring annotations in
these equations. This yields a system of fixpoint equation fq. The provenance of T (t) for
q is now simply the value of the variable corresponding to T (t) in lfp(fq). The fixpoint-
theoretic definition directly yields an algorithm, albeit a very inefficient one because of
the need of generating a rule for every intensional tuple. We investigate in Part III more
efficient algorithms, for specific types of semirings.
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Because we have spent a lot of time in Chapter 2 discussing on infinite sums and
continuous operators in semirings, we will give additional insights on their choice to use
commutative ω-continuous semirings. We extend the short discussion in [Green et al.
2007] about the decision process leading to use such semirings for expressing provenance
for Datalog programs. It is clear that closed semirings (see Section 2.2.3) are too limited,
due to the necessity of idempotence, and it is also quite natural to focus only on countable
sums as we will never deal with non countable patterns. The interesting question is
whether ω-complete semirings can suffice for having a proper definition for provenance.

Let us consider the Datalog program r outlined as Algorithm 4 over Semiring 10
denoted S in the following. This semiring is ω-complete but not ω-continuous1. We
consider an instance I containing only E(0) with provr

E(0) = a over S. The system of
fixpoint equations associated to r and I is x = a ⊕ ax with x the target objective for
provr

I(0). It is easily seen, that for both definitions of the provenance, provr
I(0) = ∞.

But the fixpoint computation converges towards a because a = a⊕ aa holds true in S.
The reason for this to fail comes from the fact that idempotence does not extend to
infinite idempotence (a⊕ a = a but

∑
a =∞). We made a case in Chapter 12 for not

using a least fixpoint semantics for Datalog provenance.

Algorithm 4 Datalog program r with EDB = {E} and IDB = {I}
1: I(x) :- E(x).
2: I(x) :- I(x), E(x).

3.3. Provenance Semirings
We now turn our focus on the notion of provenance semirings [Green et al. 2007]. Given
a query language (e.g., positive relational algebra or Datalog) and a class of semirings
on which the definition of the provenance for such query language is well-founded –
for instance commutative semirings (resp. commutative ω-continuous semirings) – the
semiring of provenance is an abstract structure (i.e., a free algebra) allowing for a sym-
bolic representation of the provenance and permitting to factorize computations.

Definition 3.4 (Positive algebra provenance semiring [Green et al. 2007]). Let X be
the set of tuple ids of a (usual) database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables (a.k.a. indeterminates) from
X and coefficients from N, with the operations defined as usual: (N[X], +, ·, 0, 1).

Property 3.5 (Free algebraic structure [Green et al. 2007]). Let S be a commutative
semiring and X a set of variables. For any valuation ν : X → K there exists a unique
homomorphism of semirings Evalν : N[X]→ S such that for the one-variable monomials
we have Evalν(x) = ν(x).

1An alternative definition with 1∗ := 1 and a∗ := a makes it continuous (see Semiring 13).
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Theorem 3.6 ([Green et al. 2007]). The provenance for any RA+ query q factors
through N[X]: q(R) = Evalν ◦ q(R̄).

Here, R is a relation with provenance indication over S, and R̄ is its abstractly tagged
version, i.e., R̄ is a particular kind of N[X]-relation where each tuple is tagged by its own
id. Whereas for RA+ queries [Green et al. 2007] polynomials suffice, in case of Datalog
with the possibility of infinite sums to appear, we need to consider the semiring of formal
power series N∞[[X]] [Kuich 1997]. The two types of infinite sums – an infinite number
of distincts monomials and an infinite copy of the same monomial – are encompassed
within N∞[[X]]. We now recall from [Green et al. 2007] the analogous of Definition 3.4,
Property 3.5, and Theorem 3.6, but in case of Datalog and formal power series.

Definition 3.7 (Datalog provenance semiring [Green et al. 2007]). Let X be the set
of tuple ids of a database instance I. The datalog provenance semiring for I is the
commutative ω-continuous semiring of formal power series N∞[[X]].

Property 3.8 (Free algebraic structure [Green et al. 2007]). Let S be a commutative
ω-continuous semiring and X a set of variables. For any valuation ν : X → K there
exists a unique ω-continuous homomorphism of semirings Evalν : N∞[[X]] → K such
that for the one-variable monomials we have Evalν(x) = ν(x).

Theorem 3.9 ([Green et al. 2007]). The semantics of Datalog provenance for any com-
mutative ω-continuous semiring factors through the provenance semirings of formal
power series.

3.4. Free Path-Related Semiring
Given a graph G = (V, E) let us consider the free idempotent semiring generated by the
arcs of G as the semiring SE = (2P (G),∪, ·, ∅, ϵ) and the free semiring generated by the
arcs of G [Rote 1990] as the multiset semiring (NP (G),∪, ·, ∅, ϵ). To further simplify the
notation we treat only the former case, all definitions extending to multiset semantics
in the usual way. ϵ denotes the empty path, ∪ the union of paths, and

E1 · E2 = {π1π2 | π1 ∈ E1, π2 ∈ E2, n[π1] = p[π2]}.

The ∗ operator is defined as expected using both ∪ and ·. The definition is sound: P (G)
contains only valid path in G and the definition of · prohibits creating invalid paths.
We identify each edge e of G with the set {e} ∈ 2P (G) and for any valuation of the
edges in a closed semiring (aka. ω-continuous idempotent semiring) S there is a unique
homomorphism ϕ (also called Eval in the line of [Green et al. 2007]) from SE to S having
ϕ({e}) = λ(e). The computation of aggregated labels between vertices s and t factor
through ϕ, i.e., lst = ϕ(Pst(G)). The use of multisets permits to relax the condition of
idempotence and to work on ω-continuous semirings.

This construction has been pointed out by Rote [1990] to share strong similarities with
the notion of path expressions (i.e., regular expressions over the alphabet E describing
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3. Using Semirings to Express Provenance

the set of paths between two vertices of the graph) introduced by Tarjan [1981]. ϕ can be
computed by structural induction over a given path expression for Pst(G), thus allowing
to work on a finite representation of the (possibly) infinite set of paths.
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Part II.

A Provenance Model for Graph
Databases
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Prior to this PhD, we have adapted during a Master’s internship the framework of
provenance semirings – algebraic structures that can capture different forms of prove-
nance – already in use for relational databases and Datalog [Green et al. 2007] to focus
on annotated graph databases. We have then proposed three generalizations of existing
graph algorithms to compute the provenance of regular path queries (RPQs) under this
model. Each algorithm yields a different trade-off between time complexity and gener-
ality, as each requires different properties over the semiring. Together, these algorithms
already covered a large class of semirings commonly used for provenance (top-k, security,
etc.). Experimental results conducted at the time strongly suggested these approaches
were complementary and practical for various kinds of provenance indications, even on a
relatively large transport network. This preliminary work, summarised above, has been
published in TaPP 2018 [Ramusat et al. 2018].

Such encouraging results convinced us to dig into the practical and theoretical de-
tails of such framework and this thesis has eventually been the opportunity to pursue
investigations on this research topic.

The first part of the thesis has been dedicated to investigate the efficient compu-
tation of the provenance of rich queries over graph databases. We made clear how
semiring-based provenance annotations enrich the expressiveness of routing queries over
graphs. We notably addressed the limitations of the three algorithms by introducing
a new one, partially bridging a complexity and expressiveness gap and adding to the
algorithmic toolkit for solving this problem. Importantly, we provided a comprehensive
taxonomy of semirings and corresponding algorithms, establishing which practical ap-
proaches are needed in different cases. We implemented and comprehensively evaluated
several practical applications of the problem (e.g., shortest distances, top-k shortest
distances, Boolean or integer path features), each corresponding to a specific semiring
and algorithm, that depends on the properties of the semiring. On several real-world
and synthetic graph datasets, we showed the fact that the algorithms we propose ex-
hibit large practical benefits for processing rich graph queries. This research has been
published at EDBT 2021 [Ramusat et al. 2021b].

This part is organized as follows. We start with Chapter 4 introducing the prove-
nance framework for graph databases. Essentially based on [Ramusat et al. 2018], but
augmented with complementary results which were omitted there due to lack of space.
We also give an alternative semiring-based statement for some of the structural results,
to provide a more algebraic oriented view of the introduced constructions. Chapter 5
recalls basic provenance-aware algorithms and Chapter 6 introduces the new algorithm
we designed during this PhD. Chapter 7 focuses on the experiments based on our imple-
mentation made freely available at [Maniu et al. 2020]. Finally, we provide the taxonomy
we established in [Ramusat et al. 2021b] and also discuss on the theoretical limitations
of our framework. We also explain the rough ideas that led us to turn our attention to
Datalog provenance that will be the focus of Part III.
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4. Introduction to the Model
This chapter is built upon the notation already introduced in Chapter 1.

4.1. Graph Databases with Provenance Indication
Given a finite alphabet Σ, a graph database G over Σ is a pair (V, E), where V is a
finite set of node ids (i.e., V ⊆ V) and E ⊆ V × Σ × V . Thus, each edge in G is a
triple (v, a, v′) ∈ V × Σ × V , whose interpretation is an a-labeled edge from v to v′ in
G. When Σ is clear from the context, we shall speak simply of a graph database. A
graph database with provenance indication (V, E, w) over S is a graph database (V, E)
together with a weight function, w: E → S for (S,⊕,⊗, 0̄, 1̄) a semiring. The weight
function w can also be extended to paths by defining the weight of a path as the result
of the ⊗-multiplication of the weights of its constituent edges: w[π] :=

k⊗
i=1

w[ei] and can
in fact be extended to any finite set of paths by w[⋃n

i=1 πi] := ⊕n
i=1 w[πi]. Given an edge

e ∈ E, we denote by ρ(e) its label. The label ρ(π) ∈ Σ∗ of a path π is defined as the
concatenation of its labels:

ρ(π) = ρ(e1)ρ(e2) · · · ρ(ek−1)ρ(ek).

4.2. Regular Path Queries (RPQs)
RPQs [Barceló 2013] provide a way to query a graph database using its topology and
constitue the basic navigational mechanism for graph databases. An RPQ Q has the
form RPQ(x, y) := (x, LQ, y) where LQ is a regular language, with the semantics that Q
is satisfied iff there exists at least a path having the sequence of its labels’ edges in LQ.
From now on, we use the shorthand LQ for the RPQ Q. We now introduce the notion
of provenance of an RPQ based on the notion of provenance semiring for the Datalog
language [Green et al. 2007].

Definition 4.1 (Provenance of an RPQ [Ramusat et al. 2018]). For a graph database
G with provenance indication over S, such a query Q associates to each pair (x, y) of
nodes an element provQ

S (G)(x, y) of the semiring called the provenance of the RPQ Q
between x and y defined as

provQ
S (G)(x, y) :=

⊕
π∈Pxy(G),
ρ(π)∈LQ

w[π].
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4. Introduction to the Model

Definition 4.1 involves an infinite sum, we will explain later how to deal with it. We
will consider and name many variants of this problem. Given two vertices s and t,
the single-pair provenance problem computes the provenance between s and t. Given a
vertex s, the single-source provenance problem computes the provenance between s and
each vertex of the graph. The full provenance, or all-pairs provenance problem computes
the provenance between each pair of vertices of the graph.

4.3. Graph Transformation
We now show how to simplify the computation of the provenance of an RPQ whose
language is non-trivial. That is, given a graph database G over S and an RPQ Q,
we want to compute the function provQ

S (G). For this, we suppose we have a complete
deterministic automaton AQ to represent LQ. We reduce the problem of computing the
provenance of a query Q over labeled graph G to the problem of computing shortest
distances over an unlabeled graph G′.

Let AQ = (K, ∆, k0, F ) where ∆ ⊆ K × Σ ×K is the transition relation, k0 ∈ K is
the initial state and F ⊆ K the set of final states. If (k, a, k′) ∈ ∆ we note k

a−→ k′.
In order to take into account path restrictions we will transform the graph G by taking
the product graph PG×AQ

between itself and the automaton AQ. The product graph is
defined as PG×AQ

= (V ×K, E ′) over Σ′ = {⋆}, where

E ′ = {((v, k), ⋆, (v′, k′)) | ∃a ∈ Σ, (v, a, v′) ∈ E ∧ k
a−→ k′},

and the weight function, w′: E ′ → S:

e = ((v, k), ⋆, (v′, k′)) 7→
⊕
a∈Σ,

k
a−→k′

w[(v, a, v′)]1.

We now show that we can compute the provenance of the query Q, between x and
y in the graph G by computing the provenance of the reachability query R (the query
with underlying language LR = Σ∗) over PG×AQ

between all pairs having source (x, k0)
and a target (y, kF ) for kF ∈ F and performing a last step consisting in summing each
of them. The next lemma characterizes the kind of paths from the source in PG×AQ

.

Lemma 4.2 ([Ramusat et al. 2018]). If AQ is a complete and deterministic automaton,
there is a one-to-one mapping c between paths from x in G onto paths from (x, k0) in
PG×AQ

. Moreover for π with p[π] = x and n[π] = y we have n′[c(π)] = (y, k) with
k0

ρ(π)−→ k and w[π] = w′[c(π)] where n′ is the destination for edges in PG×AQ
and w′ the

weight function of this graph.

Proof. We construct c(π) by induction over the length of the path π:

1Or PG×AQ
can be equivalently defined as a multigraph to keep a separate edge for each label.
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4. Introduction to the Model

Base case, π1 = e1 = (x, a, x1) then c(π1) = e′
1 := ((x, k0), ⋆, (x1, k1)) with k1 such

that k0
ρ(e1)−→ k1 which exists because the automaton is complete and is uniquely defined

by determinism of the automaton.
Induction step, πn = πn−1en, then c(πn) := c(πn−1)e′

n, with e′
n = (n′[c(πn−1)], ⋆, (y, kn))

and kn such that kn−1
ρ(en)−→ kn which exists because the automaton is complete and is

uniquely defined by determinism of the automaton.
Finally, we obtain a one-to-one function c onto paths from (x, k0) in PG×AQ

and by
construction of the graph n′[c(π)] = (y, k) with k0

ρ(π)−→ k and w[π] = w′[c(π)] holds for
each π.

Using the above lemma, we can show:

Theorem 4.3 ([Ramusat et al. 2018]). The following equality holds:

provQ
S (G)(x, y) =

⊕
kF ∈F

provR
S(PG×AQ

)((x, k0), (y, kF )).

Proof. Using the definition of provenance and Lemma 4.2 we obtain successively:

provQ
S (G)(x, y) =

⊕
π∈Pxy(G),
ρ(π)∈LQ

w[π]

=
⊕

π∈Pxy(G),
ρ(π)∈LQ

w′[c(π)] by properties of c

=
⊕

kF ∈F

⊕
π∈P(x,k0)(y,kF )(PG×AQ

)
w′[π]

because for each π, n′[c(π)] = (y, k) with k0
ρ(π)−→ k

=
⊕

kF ∈F

provR
S(PG×AQ

)((x, k0), (y, kF ))

Let us now take a look at the two constraints over the automaton AQ (i.e., complete-
ness and determinism). Both are required by Lemma 4.2 in order to ensure a one-to-one
correspondence from paths in the initial graph to paths in the product graph. Never-
theless, no one is interested in vertices in the product graph with a second component
not an accessible or not a coaccessible state of the automaton (see Remark 4.4). In
practice, for efficiency reasons, either the product graph will be computed on-the-fly, or
those non-relevant vertices will be subsequently removed without any impact on prove-
nance computation. Property 4.5 moreover entails the fact the automaton need not be
necessarily complete for the construction from Lemma 4.2 to work.

Remark 4.4. If k ∈ K is not a coaccessible state in AQ, then for any v, v′ ∈ V 2, kF ∈ F
there is no path from (v, k) to (v′, kF ) in PG×AQ

.
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4. Introduction to the Model

Property 4.5. Removing vertices (v, k) in PG×AQ
, with v ∈ V and k ∈ K not a

coaccessible state in AQ, does not affect the provenance of the initial query Q.
Proof. Using the equality (already derived in the proof of Theorem 4.3):

provQ
S (G)(x, y) =

⊕
kF ∈F

⊕
π∈P(x,k0)(y,kF )(PG×AQ

)
w′[π],

we observe no such (v, k) belongs to any path contributing to the right hand side sum.

We have seen so far that a deterministic automaton is required in the general case,
but this restriction can be obviated when the semiring of interest is idempotent. This is
the purpose of the following Property 4.7.
Lemma 4.6. If AQ is a complete and non-deterministic automaton, given a path
π = e1e2 · · · en from x to y in G, where πp denote the longest proper prefix of π (i.e.
e1e2 · · · en−1) and itself in case of empty path, each path π′ in the set of paths:

Πk(π) = {π′ | p′[π′] = (x, k0), n′[π′] = (y, k), k0
ρ(πp)−→ k′ ρ(en)−→ k, and π′

p ∈ Π′
k(πp)}

verifies w′[π′] = w[π], therefore w′[Πk(π)] = w[π] if Πk(π) is not empty, 0̄ either.
Proof. The proof is similar to proof of Lemma 4.2 but, due to non-determinism, instead
of defining c(π) we construct the set Π(π) corresponding to each possible run in the
automaton.
Property 4.7. The following equality holds when S is idempotent and AQ an NFA:

provQ
S (G)(x, y) =

⊕
kF ∈F

provR
S(PG×AQ

)((x, k0), (y, kF )).

Proof. Using the definition of provenance and Lemma 4.6 we obtain successively:
provQ

S (G)(x, y) =
⊕

π∈Pxy(G),
ρ(π)∈LQ

w[π]

=
⊕

π∈Pxy(G),
ρ(π)∈LQ

⊕
kF ∈F

w′[ΠkF
(π)] by Lemma 4.6

=
⊕

kF ∈F

⊕
π∈P(x,k0)(y,kF )(PG×AQ

)
w′[π]

=
⊕

kF ∈F

provR
S(PG×AQ

)((x, k0), (y, kF ))

This construction generalizes the ideas from [Rote 1990] that were recalled in Sec-
tion 2.1.2. We were using the semiring ({∅, E, O, EO},∪, ·, ∅, EO) with all edges labeled
with O. An automaton over Σ = {a} for counting modulo 2 has two states, say E and
O. The carrier set of the above mentioned semiring is the powerset of the set of states
of the parity automaton. It is clear that their construction is precisely what we obtain
doing the product of the graph with the parity automaton when the semiring S is trivial
(we forget about the weights).
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4.4. Path Provenance and Its Semantics
We previously showed that computing the single-pair provenance of an RPQ could be
reduced in polynomial time to the single-source provenance problem of the reachability
query. Performing this construction on-the-fly – avoiding generation of inaccessible
vertices – using an (usually quite small) automaton leads to an affordable overhead;
even for large graphs as it has been showed experimentally in [Ramusat et al. 2018]. We
will implicitly use this reduction from now on, and consequently also ignore edge labels
and see a graph database as defined by its vertices, edges, and semiring weights. We
now consider the subsequent definition of the path provenance problem.

Definition 4.8 (Path provenance [Ramusat et al. 2021b]). Let G be a graph database
with provenance indication over some semiring S. The provenance between x and y, for
x and y two vertices of G is defined as the (possibly infinite) sum:

provS(G)(x, y) := provR
S(G)(x, y) = w [Pxy(G)] =

⊕
π∈Pxy(G)

w[π].

We have still not discussed about the conditions over the underlying semiring of use
in Definitions 4.1 and 4.8 to make the (possibly infinite) sum over the provenances of all
paths from the source vertex to the target vertex well-defined and semantically sound.
We observed in [Ramusat 2019] that the only possible source of non-finiteness in the
sum is due to cycles in the graph. Thus, we only need to be able to sum all the powers
of a given semiring value. The first step to give an algebraic basis to the expressions we
will manipulate when dealing with provenance values for graph databases is to consider
star semirings (Definition 2.12 in Section 2.2.1). We additionally need the star operator
to verify for all semiring element a: a∗ = ⊕∞

n=0 an for some well-behaved infinitary sum
operation ⊕ (namely, associativity, and distributivity of ⊗ over this infinitary sum oper-
ator). We have hopefully studied in the preliminaries this class of semirings, commonly
known as ω-complete star semirings (Definition 2.19 in Section 2.2.2). Moreover, for
semantic-based considerations, the semiring will usually be assumed to be ω-continuous.
Most of the constructions and results in the literature focus on such structures, it is
notably the case for both free path-related semirings in Section 3.4. In the next part of
the thesis, where a graph database will be converted into a Datalog query, it will also
be required to work on continuous structures. Nevertheless, we have seen in preliminar-
ies this assumption does not restrict our model because application semirings generally
either verify this property or can be embedded into larger continuous semirings.

Example 4.9. We now provide example semirings with their associated semantics for
graph provenance. Let G be a graph database over some semiring S, and s and t fixed
source and target vertices in G. The provenance between s and t corresponds to the
following notions, depending on the semiring S:

Tropical semiring: defined as Semirings 2 and 3.
Semantics: length of shortest path between s and t.
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Top-k semiring: for k ≥ 1 some integer,

((R+ ∪ {∞})k,
k

min, +k, (∞, . . . ,∞), (0,∞, . . . ,∞)),

where
k

min((a1, . . . , ak), (b1, . . . , bk)) =
k

min{a1, . . . , ak, b1, . . . , bk}

returns the k smallest entries (with duplicates) among those in a and b, in increas-
ing order, and

(a1, . . . , ak) +k (b1, . . . , bk) =
k

min{ai + bj | 1 ≤ i, j ≤ k}.

We further impose that only tuples that are in increasing order are valid elements
of the semiring. Note that the top-1 semiring is the same as the tropical semiring.
Semantics: lengths of k shortest paths between s and t.

Counting semiring: defined as Semiring 5.
Semantics: total number of paths between s and t, edge weights being interpreted
as number of edges between two vertices.

Boolean semiring: defined as Semiring 1.
Semantics: existence of a path between s and t, depending on the existence of
edges denoted by their Boolean weights.

k-feature semiring: for k ≥ 1 some integer,

((R+)k, min, max, (∞,∞,∞), (0, 0, 0))

where min and max are applied pointwise; it also exists in dual form, with min
and max exchanged.
Semantics: minimum feature value along each dimension of all paths between s
and t; if min and max are exchanged, maximum feature value along some path
from s to t.

Integer polynomial semiring. (N[X], +,×, 0, 1) where X is a finite set of variables, and
+, ×, 0, 1 have their standard interpretations as polynomial operators and poly-
nomial values.
Semantics: this is the most general provenance semiring in use for tracking non-
recursive queries such as relational algebra queries [Green et al. 2007].

Formal power series: how-provenance, see [Green et al. 2007].

Shortest-path semiring: let ((R+ ∪ {∞}) × Σ∗,⊕,⊗, (∞, ϵ), (0, ϵ)) with the following
operators ⊕ and ⊗:
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• (d, π) ⊕ (d′, π′) = (min(d, d′), π′′) where π′′ is π if d < d′, π′ if d > d′, and
min(π, π′) (in lexicographic order, assuming some order on Σ) if d = d′;

• (d, π)⊗ (d′, π′) = (d + d′, π · π′) if neither d nor d′ is∞; and (d, π)⊗ (d′, π′) =
(∞, ϵ) if either d or d′ is ∞.

Semantics: pair formed of a length l and path label π such that π is the shortest
path from s to t, of length l (if there are multiple shortest paths, π is the first in
lexicographic order).

All semirings in Example 4.9 are commutative except for the shortest-path semiring
(indeed, concatenation is not a commutative operation). All of them are idempotent,
except for the top-k, counting, and integer polynomial semirings. The natural order of
the tropical semiring is the total order ≥ (note that this is the reverse of the standard
order on R+ ∪ {∞}).

Whereas many of these examples are quite simple, the framework of semiring prove-
nance also allows modeling of intricate issues, e.g., when the problem of interest can
be decomposed into several sub-problems and when the resulting provenance does not
necessarily correspond to a particular path in the graph.

u

s t

v

h ≤ 4

h ≤ 2.10

h ≤ 2.10, charging station

Figure 4.1.: Example road network represented by a graph with provenance annotations
along two dimensions: maximum height h (as a positive number) a vehicle
must have to use the road segment, and a Boolean indicating the presence
of an electrical charging station. When a dimension is not mentioned, the
annotations are assumed to be, respectively, h ≤ ∞ and ¬(charging station).

Working example Consider the example of a road transportation network modeled as
a directed graph with provenance annotations on edges. We can for example encode the
presence of points of interests (such as gas stations, restaurants, or electrical charging
stations) as Boolean features on edges, and road properties (e.g., maximal height or
weight for a bridge or tunnel) as real-valued features.

We will show that, using semiring provenance, we can deal with graph queries that
take into account multiple such features: a pair of vertices is valid for the queries if
there exists at least one valid path for each restriction between the two locations. An
application of this would be to ensure that different vehicle categories (say, a high-
clearance truck and an electric car that requires charging on the way) can properly
reach a common destination from the same origin.

Another possible semantics for semiring provenance is to check that all paths between
two vertices verify (or exclude) some properties (e.g., absence of tolls, or presence of
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gas stations on the route) thus providing road administrators crucial information on the
global state of the roads between two points.

This is illustrated in Figure 4.1, a road network where some road segments have
restrictions on the height on vehicles; this is a first dimension of provenance. The second
dimension records whether there exists an electrical charging station on the road segment
– in our example, this is the case for only one edge. We model the charging station
Boolean feature as an integer feature by simply setting ⊤ = 1 and ⊥ = 0. We take the
(max, min) definition of the k-feature semiring where we compute the maximum value
of each feature among some path from origin to destination, and we order heights in
decreasing order (e.g., by taking their inverse) so that a higher feature value means a
(more restrictive) lower height.

Consider two types of vehicles of interest that want to reach the vertex t from the
vertex s: one has height between 3 and 4 meters, the second is a small (h ≤ 1.5) electric
car that needs at least one charging station on the road to t. In the presence of the edge
from u to v, both of them can reach t from s; without that edge, only the electric car
is able to. This is reflected in the provenance: prov(G)(s, t) = (4, charging station) while
prov(G\{(u, v)})(s, t) = (2.10, charging station).
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5. Provenance-Based Algorithms
We now provide a review of three algorithms to solve path provenance problems, initially
described in [Ramusat et al. 2018]. Each of these algorithms yields a different trade-off
between time complexity and applicability to various types of semirings, as summarized
in Table 5.1.

Table 5.1.: Required semiring properties and asymptotic complexity for each studied
algorithm, where T• is the complexity of the elementary semiring operation
•. The last column assumes constant cost for all semiring operations.

Name Semiring property Time complexity (with semiring op.) Time complexity

MatrixAsteration star O(|V |T∗ + |V |3(T⊕ + T⊗)) O(|V |3)
NodeElimination c-complete star O(|V |T∗ + |V |3(T⊕ + T⊗)) O(|V |3)
Mohri k-closed Exponential Exponential
MultiDijkstra 0-closed ⊗-idempotent O (ℓ× (T⊕|V | log |V |+ |E| (T⊕ + T⊗))) O(ℓ× (|V | log |V |+ |E|))
Dijkstra 0-closed total ordered O(T⊕|V | log |V |+ |E|(T⊕ + T⊗)) O(|V | log |V |+ |E|)

Table 5.1 has five entries because we also compare the studied algorithms to the
method we will introduce in Chapter 6, and to the MatrixAsteration algorithm
described in the preliminaries; it has a wider scope than NodeElimination despite
being less likely to allow structure-based heuristic for increased efficiency. We will discuss
this in Chapter 7.

5.1. Mohri’s Framework for Shortest-Distances
We now introduce k-closed semirings whose properties are widely used in the design of
the Mohri’s algorithm presented further.

Definition 5.1 (k-closed semirings [Mohri 2002]). A semiring (S,⊕,⊗, 0̄, 1̄) is k-closed
for a given k ≥ 0 if:

∀a ∈ S,
k+1⊕
n=0

an =
k⊕

n=0
an.

Remark 5.2. Any 0-closed semiring is idempotent, since, for all a,

a = a⊗ 1̄ = a⊗ (1̄⊕ 1̄) = a⊕ a.

The following property of k-closed semirings is standard:
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Property 5.3. Let (S,⊕,⊗, 0̄, 1̄) be a k-closed semiring, then for any integer l > k,

∀a ∈ S,
l⊕

n=0
an =

k⊕
n=0

an.

It is clear that k-closed semirings are star semirings (Definition 2.12). A specific
caveat occurs there if we do not restrict to continuous structures. By looking at R4
(aka. Semiring 7), we see it is a 1-closed semiring, but the star operator is not obtained
by any finite number of steps. Thus Mohri would compute the provenance as if a∗ := a.
But it is also worth knowing they also are Conway semirings [Droste et al. 2009, Theorem
2.4]. In fact, any locally closed semiring1 verifies the Conway equalities (Definition 2.16).

Back to Example 4.9, the tropical, Boolean, k-feature, and shortest-path semirings
are 0-closed. The top-k semiring is (k− 1)-closed. The counting and integer polynomial
semirings are not k-closed for any k.

Mohri [2002] introduced an algorithm for computing single-source path provenance
over k-closed semirings (denoted single-source shortest-distance problem in his line of
work). Outlined in Algorithm 5, this algorithm performs in a manner similar to the
Bellman–Ford algorithm with step-by-step relaxations over the edges of the graph (lines
13–14), maintaining a queue to decide in which order the elements are inspected. The
queue can be chosen in different ways: based on the topology of the graph, e.g., if the
graph is acyclic; or a queue prioritized by weight when, e.g., one wishes to compute
top-k shortest paths using the top-k semiring. It is worth noting this algorithm does
not require the semiring to be idempotent.

In the worst case, the theoretical complexity of this approach is exponential in the size
of the graph [Mohri 2002], mainly due to the fact that the algorithm may have to visit
the same cycle in the graph multiple times. However, the complexity heavily depends
on the implementation of the queue. For instance, for top-k shortest paths, implement-
ing a priority queue allows for an efficient algorithm, having polynomial complexity.
For road transportation networks and top-k shortest paths, experiments we conducted
in [Ramusat et al. 2021b] show an almost linear-time behavior in k and the size of the
graph.

In contrast, the algorithm may be much more inefficient in practice for other types of
networks (such as social networks). We have conjectured this may be due to the fact
that transport networks have relatively low treewidth [Maniu et al. 2019]. The treewidth
is a parameter measuring how much a graph (or more generally any relational instance)
resembles a tree2. Many intractable problems over graphs have tractable solutions on
instances of fixed treewidth. We have experimentally confirmed [Ramusat et al. 2021b]
that many of the algorithms for provenance computation strongly benefit – in terms of
running time – from low treewidth.

Another important graph parameter – stemming from the active research community
around computing routing for, e.g, driving directions – the highway dimension [Abraham

1For any element a of the semiring there exist a k such that
k+1⊕
n=0

an =
k⊕

n=0
an.

2See Section 1.1.1 for formal definition and basic properties of treewidth.
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et al. 2016] has been introduced to provide a theoretical basis for the efficiency observed
in practice in state-of-the-art heuristics for computing optimal transport paths. This
parameter relies heavily on weights on the edges of the graphs and the distribution of
shortest distances in the graph. In the same set of experiments from [Ramusat et al.
2021b] we have evaluated whether this parameter also explains the practical efficiency
of our algorithms for computing the provenance of routing queries. But it turns out
the algorithms perform equally well using random weights. Chapter 7 presents our
experimental results from [Ramusat et al. 2021b] related to these questions.

Algorithm 5 Mohri – single-source path provenance [Mohri 2002]
Input: (G = (V, E, w), s) a graph database with provenance indication over S and the

source s.
Output: Array w representing the single-source path provenance from s.

1: for i ∈ {1, . . . , |V |} do
2: w[i]← r[i]← 0̄
3: end for
4: w[s]← r[s]← 1̄
5: Q← {s}
6: while Q ̸= ∅ do
7: q ← head(Q)
8: dequeue(Q)
9: r′ ← r[q]

10: r[q]← 0̄
11: for each e ∈ E[q] do
12: if w[n[e]] ̸= w[n[e]]⊕ (r′ ⊗ w[e]) then
13: w[n[e]]← w[n[e]]⊕ (r′ ⊗ w[e])
14: r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])
15: if n[e] /∈ Q then
16: enqueue(Q, n[e])
17: end if
18: end if
19: end for
20: end while
21: w[s]← 1̄
22: return w

5.2. Generalized Dijkstra’s Algorithm
In preliminaries, we said we will sometimes consider the reversed of the natural order
when it is more convenient to work with. When dealing with the generalized Dijkstra’s
algorithm we will consider the reversed natural order : a ≤S b := a⊕ b = a. As long as
the semiring of interest is 0-closed, ≤S is indeed an order and for all a ∈ S, 1̄ ≤S a ≤S 0̄.
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Dijskstra’s algorithm is generally used to solve shortest-distance problems in directed
graphs. However, as shown also in [Ramusat et al. 2018], the algorithm readily gener-
alizes to our semiring context, by placing some restrictions on the semirings used. For
instance, the tropical semiring is exactly the semiring that allows to compute the short-
est distance, as in the original algorithm. The general flow of the algorithm – using
general semiring operations – is outlined in Algorithm 6, and Table 5.1 indicates its
running time (in terms of the graph size and the costs of the semiring operations ⊕
and ⊗). Dijkstra’s algorithm is known to be a very efficient algorithm. However, this
efficiency comes from the fact that it uses a priority queue: once a value is extracted
from it, we know that it is the correct one – this allows us to only visit each vertex in
the graph once. This only works if we apply Dijkstra to semirings which are 0-closed
(or absorptive) and in which an additional condition is satisfied: the natural order is a
total order [Ramusat et al. 2018].

As we shall discuss later, there is a large complexity gap between Dijkstra on the
one hand and the other two algorithms we discuss in this section – NodeElimination
and Mohri – on the other. This is the main motivation to introduce the new algorithm
we present in Chapter 6.

Algorithm 6 Dijkstra – single-source path provenance [Ramusat et al. 2018]
Input: (G = (V, E, w), s) a graph database with provenance indication over S and the

source s.
Output: Array w representing the single-source path provenance from s.

1: P ← ∅
2: w[a]← 0̄, ∀a ∈ V
3: w[s]← 1̄
4: while P ̸= V do
5: Select a /∈ P with minimal w[a]
6: P ← P ∪ {a}
7: for each neighbor b of a not in P do
8: w[b] = w[b]⊕ (w[a]⊗ w[ab])
9: end for

10: end while
11: return w

Theorem 5.4 ([Ramusat et al. 2018]). If the semiring of provenance is 0-closed and ≤S

is a total order then Algorithm 6 computes the single-source path provenance from the
source s.

Proof. We show that for each vertex a ∈ P , w[a] is the shortest-distance between s and
a. Note that when a vertex is added to P its value in w will no longer change.

Base case Because ∀a ∈ S, 1̄ ≤S a, s is the first vertex added in P and 1̄ is its
provenance (corresponding to the empty path).
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Induction case At each moment of the algorithm we consider for each v ∈ V , Lsv ⊆
Psv(G) the set of paths seen by the algorithm, i.e. ⊗

π∈Lsv

w[π] = w[v]. We have for

each p ∈ P , w[Lsp] = ⊕
π∈Psp(G)

w[π] the provenance of the reachability query. This set is

updated only on line 8: Lsb ← Lsb ∪ (Lsa · {ab}).
We now show, that, when t is added in P , Lst is the provenance between s and t;

at this moment, it holds that for each c /∈ P , w[Lsc] = ⊕
p∈P

( ⊕
π∈Lsp

w[π]⊗ w[pc]
)

and

∀c ∈ P̄ \ {t}, w[Lst] ≤S w[Lsc]:

⊕
π∈Pst

w[π] =
⊕
p∈P

 ⊕
π∈Psp

w[π]⊗
⊕

π∈Ppt

w[π]


=
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗
w[pt]⊗ (1̄⊕

⊕
π∈Ptt

w[π])
 (by IHP)

⊕
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗
⊕

c∈P̄ \{t}

w[pc]⊗
⊕

π∈Pct

w[π]


=
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗ w[pt]
 (0-closedness)

⊕
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗
⊕

c∈P̄ \{t}

w[pc]⊗
⊕

π∈Pct

w[π]


⊕
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗
⊕

c∈P̄ \{t}
w[pc]

 (because of total order)

=
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗ w[pt]


⊕
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗
⊕

c∈P̄ \{t}
w[pc]

 (0-closedness)

=
⊕
p∈P

 ⊕
π∈Lsp

w[π]⊗ w[pt]
 (because of total order)

= w[Lst]

Note. It was not known to us by the time we published it in [Ramusat et al. 2018] that a
similar generalization of the Dijkstra’s algorithm has already been presented in [Minoux
et al. 2008, Section 4.4.3]. The terminology was different: 0-closed totally ordered
semirings were called selective dioids. One can also find in [Rote 1990, Section 5.4] a
short paragraph about the possibility to generalize the Dijkstra’s algorithm under similar
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assumptions (i.e semiring which comes from linearly ordered semigroups with 1̄ the
largest element); nevertheless, neither an algorithm nor a proof was provided alongside
this claim. This is an example of the issues we faced when dealing with semiring theory:
the large discrepancy of notation and names made it exceedingly difficult to assemble
the relevant results from the literature.

5.3. Node-Elimination Technique
The most general algorithm available is based on the idea of Brzozowski and McCluskey
for obtaining a formal language expression (i.e., a regular expression) equivalent to
the language of an automaton [Brzozowski et al. 1963]. The algorithm is outlined in
Algorithm 7. The algorithm works by eliminating vertices one by one and computing
the “shortcut” values for each vertex pair, until only the source and target vertices
remain. This algorithm works for any ω-complete star semiring instead of the weaker
structure of star semirings because infinite associativity, i.e.,

ab∗c = a

⊕
i≥0

bi

 c =
⊕
i≥0

abic

must hold for the shortcuts computed in the algorithm to be correct.
In general, the complexity of the algorithm is at least cubic in the number of ver-

tices in the graph, which makes it practically unusable on large graphs. Importantly,
however, it also can be shown that its complexity is closely related to the treewidth
parameter of the graph. Following a simplicial elimination order3 (unfortunately not
tractable to compute) one can rephrase the complexity shown in Table 5.1 in terms of
the treewidth parameter w by O(|V |T∗ + w2|V |(T⊕ + T⊗)). Thus, if the treewidth is
small over, e.g., transportation networks, one can benefit from heuristics for finding a
suitable elimination order to optimize this algorithm. We have dedicated a part of our
experiments in [Ramusat et al. 2021b] to demonstrate the impact of some heuristics (for
instance, focusing on vertices of higher degrees) on the running time of this algorithm.
The results we obtained will be outlined in Chapter 7.

Another advantage of using NodeElimination is the possibility to compute the
provenance for multiple pairs in a single run of the algorithm – we create t′ for each
target vertex t and return all such ws′t′ . Thus, the modified NodeElimination returns
the provenances between (s, k0) and each (t, kF ), for kF ∈ F and solves with same
complexity the provenance for an RPQ using the graph product technique.

3Refer to Section 1.1.1 for a discussion relating simplicial elimination orders and treewidth.
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Algorithm 7 NodeElimination – single-pair path provenance
Input: (G = (V, E, w), s, t) a graph database with provenance indication over S, the

source s, and the target t.
Output: Single value ws′t′ representing the single-pair path provenance between s and

t.
1: V ′ ← V ∪ {s′, t′}
2: E ′ ← E ∪ {(s′, s), (t, t′)}
3: for i ∈ V ′ do
4: for j ∈ V ′ do

5: w(0)
ij ←

{
w[ij] if i ̸= j,
1̄ ⊕ w[ij] if i = j

6: end for
7: end for
8: for k in V do
9: for each (p, q) s.t. (p, k), (k, q) ∈ E ′ do

10: wpq ← wpq ⊕ (wpk ⊗w∗
kk ⊗wkq)

11: end for
12: end for
13: return ws′t′
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6. Lattice Decomposition
As explained in Section 5.2, Dijkstra requires a total natural order on the elements
of a 0-closed semiring. This is quite a restrictive setting (among the examples listed
in Example 4.9, only the tropical semiring fits), while using a more generally available
algorithm such as Mohri can lead to practical inefficiency. The question we addressed
in [Ramusat et al. 2021b] is whether we can bridge this complexity gap and still obtain
practical algorithms for 0-closed semiring without total orders.

First, we present an example semiring setting, with non-total natural order, where
Dijkstra cannot be readily applied.

Example 6.1. Let us consider the 3-feature semiring

({0, 1}3, min, max, (1, 1, 1), (0, 0, 0)).

In the example graph below, the provenance between s and t is:

min (max ((0, 0, 1), (0, 1, 0)) , (1, 0, 0)) = (0, 0, 0)

and that between s and r is:

min (max ((1, 0, 0), (0, 1, 0)) , (0, 0, 1)) = (0, 0, 0)

s

r

t

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Assuming the existence of an order for which Dijkstra computes this provenance.
Then, starting from s, Dijkstra would select either r and assign it provenance (0, 0, 1),
which is wrong, or t and assign it provenance (1, 0, 0), which is also wrong.

We addressed this problem in [Ramusat et al. 2021b] by designing a new algorithm,
MultiDijkstra (for Multidimensional Dijkstra) that applies to the more general case of
0-closed semirings for which multiplication is idempotent (such as the k-feature semiring,
but also the Boolean function semiring used in probabilistic databases, see [Senellart
2017]). As it turns out, such semirings satisfy the axioms of bounded distributive lattices
[Bistarelli et al. 1997, Theorem 10]; this allowed us to design an efficient algorithm for
answering queries using these types of semirings.
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6.1. Mathematical Background
In the following we recall the basic notions about finite distributive lattices already
given in [Ramusat et al. 2021b]. We assume the lattices we use are finite because we
are only ever using the subsemiring generated by edge annotations. As we shall see, this
subsemiring is finite when both operations of the semiring are idempotent.

We refer the reader to [Siggers 2020] for more details regarding the theory behind
distributive lattices. The basic introduction to lattices we propose thereafter follows the
same line as the background section from [Siggers 2020].

6.1.1. Definitions and Notation
A lattice (L, <) is a partially ordered set (poset) where every pair of elements have a
unique infimum (their meet, ∧) and supremum (their join, ∨). A lattice embedding of a
lattice L into a lattice K is a one-to-one join and meet homomorphism from L to K. In
a poset, an element y covers x (denoted x ⋖ y) if x < y and there are no such z such
that x < z < y. A lattice embedding ℓ is tight if x ⋖ y implies ℓ(x) ⋖ ℓ(y).1

An element x of a lattice L is join-irreducible if x = a∨ b implies that x = a or x = b.
The set of non-zero join-irreducible elements of L is denoted J(L). It induces a subposet
of L which is also denoted by J(L).

For a subset S of a lattice L, we let ∨S = ∨
x∈S x be the join of the elements of S.

We often write ∨L S to specify that the join takes place in L. A subset S of a poset is
a downset or ideal if x ∈ S and y ≤ x implies y ∈ S. The minimum downset containing
an element x is denoted id x. We note D(P ), for a poset P , the family of downsets of
P ordered by inclusion.

A chain C of length n in a poset P is a subposet isomorphic to the linear order Zn on
the n elements {0, 1, . . . , n− 1}. A chain decomposition of a poset P is a partition of its
elements into a family C of chains C1, . . . , Cd. For a family C = {C1, . . . , Cd} of disjoint
chains, the product ∏ C :=

d∏
i=1

Ci consists of all d-tuples x = (x1, . . . , xd) where xi ∈ Ci

for each i ∈ {1, . . . , d}. It is ordered by x ≤ y if xi ≤ yi for each i.

6.1.2. Results
A classical result from Birkhoff [1937] establishes a lattice isomorphism between L and
D(J(L)):

Theorem 6.2 ([Birkhoff 1937]). The map S : x 7→ id x∩ J(L) is an isomorphism of L
to D(J(L)). Its inverse is S 7→ ∨

L S .

For a chain decomposition C of a poset, let C0 be the family of chains we get from
the chains in C by adding a new minimum element to each. Dilworth [1950] proved the
following embedding theorem:

1Implicitly from lattice notation to poset notation: x ∨ y = y means x ≤ y.
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Theorem 6.3 ([Dilworth 1950]). For any chain decomposition C of a poset P the map
S 7→ ∨

P S is an embedding of D(P ) into P = ∏ C0.

Then, we obtain the following corollary we will use later:

Corollary 6.4 ([Siggers 2020, from Corollaries 2.4 and 2.6]). Given a chain decomposi-
tion C of a distributive lattice L, there is a tight embedding of L into ∏ C0.

6.2. Application to Provenance Computation
Corollary 6.4 provided us with a way to compute provenance over distributive lattices
using a multidimensional version of Dijkstra. Because an embedding is a homomor-
phism, we can compute each component of ∏ C0 independently. And because the ho-
momorphism is one-to-one, we can easily recover the provenance at the end of the
computation.

Example 6.5. If we take a look at distributive lattice of the divisors of 60 with greatest
common divisor (gcd) and least common multiple (lcm) as join and meet operators, we
notice that the divisors of 60 are either powers of 2, 3, 5 or an lcm of these integers.
Thus, they can be represented using three dimensions representing the factorization of
60 along these prime numbers: decompose(4) = (2, 0, 0), recompose(0, 1, 0) = 3, and
recompose(2, 1, 0) = 12. We can then compute independently each dimension of the
result using Dijkstra since each component is totally ordered; then, partial results are
combined.

In other words, we can run separately, ℓ times, Dijkstra for each dimension of this
product, where ℓ is the number of chains in the chain decomposition. This gives us a
parameterized algorithm, where ℓ depends on the semiring. For example, for the semiring
used in Example 6.1, ℓ = 3. We outline the algorithm in pseudo-code in Algorithm 8.
We need the following routines that are highly specific to the semiring: decompose(e)
takes as parameter an element e of L and returns its image v(e) ∈ P . For the opposite
direction recompose(d1, . . . , dn) = ∨

0≤i≤n di returns as expected an element of L.
We use as a subroutine a slightly modified version of Dijkstra, parameterized by

the semiring dimension and working with semirings having elements in vector form,
corresponding to the decomposition. Dijkstra(s,t,i) ∈ J(L) computes the provenance
between s and t corresponding to the ith dimension of the decomposition.

Example 6.6. We describe the working of Algorithm 8 in the example presented in
Example 6.1: first, each edge value is decomposed; this step is easy to follow as the
3-feature values are already presented in decomposed form. A second step consists in
calculating values along each dimensions. Algorithm 6 is launched a first time over the
graph with edge values corresponding to the first dimension: 0 for (s, r) and (r, t), 1 for
(s, t). The result is 0. Algorithm 6 is launched a second time over the graph with edge
values corresponding to the second dimension: 0 for (s, r) and (s, t), 1 for (r, t). The
result is, again, 0. Finally, Algorithm 6 is launched a third time over the graph with
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edge values corresponding to the third dimension: 0 for (s, t), 1 for (s, r) and (r, t). The
result is 0. This ends the second step. The third step consists in recomposing partial
values obtained by successive applications of the Dijkstra subroutine. This ends up to the
final provenance value of (0, 0, 0).

Algorithm 8 MultiDijkstra – single-pair path provenance [Ramusat et al. 2021b]
Input: (G = (V, E, w), s, t) a graph database with provenance indication over S, the

source s, and the target t.
Output: Single-pair path provenance from s to t.

1: for each edge e ∈ E do
2: decompose(w(e))
3: end for
4: for each dimension i do
5: di ← Dijkstra(s, t, i)
6: end for
7: return recompose(d1, . . . , dn)

Theorem 6.7 ([Ramusat et al. 2021b]). If the semiring of provenance is 0-closed and
multiplicatively idempotent, then Algorithm 8 computes the single-pair path provenance
from s to t in time O(ℓ · (m + n log n)).

For the sake of simplicity, we presented the single-pair version of our algorithm. To
extend it to the single-source version one only needs to perform the recompose subroutine
for each vertex in the graph.

To minimize accesses to the decompose subroutine – which can be very costly – we
optimize MultiDijkstra by adopting a lazy approach, where the Dijkstra subroutine
calls decompose only when needed, storing the decomposition across calls. This avoids
scanning the whole graph when s and t are close.

Two other optimizations implemented are a stopping condition that ends the Dijkstra
subroutine when a visited vertex has value 0̄, and lazy initialization of the priority
queue. These two optimizations led to vastly improved computation times over the
naive implementation.

6.3. Practical Use Case
As exemplified in Figure 4.1, k-feature semirings can be used to ensure that all paths
from s to t verify a combination of features (they all go through a specific set of points of
interests, or verify some road properties) or either ensure the existence of valid paths up
to some collection of restrictions. We showed in [Ramusat et al. 2021b, Section 6] that
this is tractable for practical use cases (continental-sized areas, around 107 vertices).
Those experiments will be reproduced in the manuscript in Chapter 7. To the best of
our knowledge, no solution for this that scales even to graphs of thousands of vertices
has been previously proposed.
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In [Ramusat et al. 2021b] we performed experiments on real-world graph data, using an
Inria computing cluster running the OAR task manager. The individual vertices of the
cluster have a minimum of 48 GB of RAM, and run Intel Xeon X5650 or E5-26xx CPUs.

We used datasets1 from a variety of domains, mostly representing infrastructure net-
works: the OpenStreetMaps network of Paris (Paris), the Paris public transport net-
work (Stif), and the power grid of the continental US (USPowerGrid). For com-
parison, we have also evaluated on other types of datasets: a small subset of the Face-
book social network (Facebook) and the yeast protein-to-protein interaction network
(Yeast). All these datasets came without provenance annotations, that we added in
different ways depending on experiments. We also used a real weighted road trans-
portation network dataset Rome99, with tropical semiring annotations, from the 9th
DIMACS Implementation Challenge2. This dataset consists of a large portion of the
directed road network of the city of Rome, Italy, from 1999. Basic information about
the resulting graphs are summarized in Table 7.1.

For datasets without provenance annotations, unless specified differently, we randomly
generated weights in the tropical semiring for benchmarks, uniformly between 1 and
3 000. To be able to compare the impact of the weights on the performance of the
algorithms, we also use a constant-weight setting, where all weights equal to 1. Each
experiment generally represents the average over 10 runs (random choices of origin and
destination vertices).

Table 7.1.: Graph datasets: size and treewidth lower and upper estimates from [Maniu
et al. 2019]

type name # of vertices # of edges tw

infrastructure Paris 4 325 486 5 395 531 55–521
Stif 17 720 31 799 28–86

USPowerGrid 4 941 6 594 10–18
Rome99 3 353 4 831 5–50

social Facebook 4 039 88 234 142–237
biology Yeast 2 284 6 646 54–255

1These datasets were used in [Maniu et al. 2019] for treewidth computation experiments, and are
downloadable from https://github.com/smaniu/treewidth/; some of them originate from http:
//snap.stanford.edu/data/index.html.

2http://users.diag.uniroma1.it/challenge9/download.shtml
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Figure 7.1.: Comparison between algorithms for shortest distances
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Figure 7.2.: Computation time for Mohri over the top-k distances semiring, for varying
values of k and varying weight assignments (Rome99)

The experimental study was focused on comparing the four algorithms we have previ-
ously presented, over several semirings. We provide a comparison of all of our algorithms
for the computation over the tropical semiring (shortest distance), since all algorithms
can be used in this setting. We investigate the running time and the number of relax-
ation steps performed by Mohri and MultiDijkstra algorithm, using initial weights
provided by the dataset Rome99, as well as custom weights (all identical and all ran-
dom); we then study over all datasets the impact of the elimination order heuristic on
the overall performance for NodeElimination. We then finish with the comparison
between the new algorithm and the previous solutions to demonstrate its efficiency.
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Figure 7.3.: Number of relaxations performed by Mohri over the top-k distances semir-
ing, for varying values of k and varying weight assignments (Rome99)
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Figure 7.4.: Comparison between elimination orders for NodeElimination algorithm
(tropical semiring). Values greater than 100 000 s are timeouts.

7.1. Evaluating Shortest Distances
We start by evaluating how the algorithms deal with the shortest distance semiring, i.e.,
the tropical and top-k semiring (by setting k = 1). The properties of this semiring allow
their implementation for the first three algorithms: Dijkstra, Mohri, and NodeE-
limination, whereas MultiDijkstra reduces to Dijkstra in that case. We also
implemented a breadth-first-search traversal for computing accessibility with no prove-
nance information (BFS). This also allows us to compare the performance of algorithms
against non-annotated graph databases.

Figure 7.1 shows, on a logarithmic scale, the result for our graphs, and for some
settings of weights (original, random, or same weights). It is immediately clear from the
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Figure 7.6.: Computation time for Mohri and MultiDijkstra depending on the num-
ber of dimensions (Rome99)

figure that the choice of algorithm is crucial: we need the most specialized algorithm for
the semiring we use: Dijkstra is more efficient than Mohri which is more efficient than
NodeElimination. Even for Mohri, we notice that using it configured for the top-k
semiring with k = 1 does introduce an overhead in execution; the use of the tropical
semiring mitigates the overhead. We also show the overhead introduced when using
provenance annotations is quite limited, as the difference between Dijkstra and BFS
is less than an order of magnitude for each dataset, and Dijkstra sometimes even
outperforms BFS. Finally, NodeElimination is always several orders of magnitude
slower than Dijkstra. Another encouraging result is that Mohri – which allows more
classes of semirings than Dijkstra – has a reasonable running time in practice, despite
the stated exponential complexity bound in the original paper. We turn to evaluating
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Figure 7.7.: Average computation time for Mohri and MultiDijkstra over random
graphs depending on the number of nodes; shaded areas indicate minimum
and maximum computation times observed (3-feature semiring)

its performance next.

7.2. Mohri’s Algorithm in Practice
In Figure 7.2 and in Figure 7.3 we respectively study the impact of the factor k on the
running time and on the number of computations performed by the algorithm. Our
results show that the computational time is linear in k, though this is not the case for
the number of relaxations, which increases sublinearly in k. This means that for large
values of k the algorithm spends most of its time maintaining the queue.

We also compare the performance of the algorithm depending on weight assignment
(original, random, same). It seems that considering random values instead of “real”
values has almost no significant impact over the efficiency of the algorithm. This is a
somewhat disappointing result because it rules out the possibility to parameterize the
complexity of the algorithm through network parameters, for instance, in terms of the
highway dimension [Abraham et al. 2016] – a graph parameter that has been successfully
applied for understanding the efficiency of state-of-the-art shortest-distance algorithms
in road networks. However, the performance significantly increases when all weights are
uniform, which may be expected since computation of shortest distances become far
simpler, and far more paths have equal distance.

As pointed out in Section 5.1, this algorithm performs extremely well over trans-
portation networks. We wanted to provide a comparison of its working time for different
kinds of graphs (especially graphs whose treewidth is relatively large for their size). For
this purpose we used a social network dataset: who-trusts-whom network of people who
trade using Bitcoin on a platform called Bitcoin Alpha [Kumar et al. 2016; Kumar et al.
2018] (3 783 vertices and 24 186 edges). The algorithm times out after 48 hours.

What we can learn from this is that the key property making Mohri so efficient over
transportation networks is not due to distance properties (e.g., highway dimension) –
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impacted by the weights of the connections – but rather by topological properties of the
underlying graph (e.g., treewidth).

7.3. Orderings for Node-Elimination Technique
NodeElimination’s perfomance, due to its main loop of creating “shortcuts” in the
graph, is heavily dependent on the order in which the vertices are eliminated. This elim-
ination ordering is strongly linked to the treewidth parameter of the graph. For instance,
following a degree based elimination order gives an upper bound on this parameter.

Hence, we have compared different elimination orders for NodeElimination and
found out that the minimum degree based elimination order (Degree) greatly improves
the efficiency of this algorithm compared to having no such heuristic (Id). This improve-
ment can be dramatic, as for the Yeast dataset where the algorithm is two orders of
magnitude faster. As expected, weights over the edges do not impact the running time,
as shown in Figure 7.4.

This is important in practice: running NodeElimination on low-treewidth graphs
(e.g., infrastructure and transport networks) can be the difference between the algo-
rithm being unusable and allowing reasonable running times. Taking into account that
NodeElimination allows for a large class of semirings, this can have a significant
real-world application impact.

7.4. Evaluation of MultiDijkstra
We now evaluate MultiDijkstra, our solution for bridging the gap between absorptive
semirings and more general ones. We compare it to Mohri and NodeElimination in
the case of the k-feature semiring, which is kind of the canonical semiring that is 0-closed
and multiplicatively idempotent. Figure 7.5 showcases this on 3 datasets. In all cases,
our new algorithm is between 3 and 4 orders of magnitude faster than NodeElimina-
tion, depending on the network we use, and significantly faster than Mohri.

We then performed an additional experiment (Figure 7.6), examining the impact of
the number of features and values actually used in each feature on the running time
of both algorithms. We found out that when either one of the two criteria reaches 4,
Mohri times out while MultiDijkstra keeps scaling.

Finally, Figure 7.7 presents a comparison between Mohri and MultiDijkstra
on large Erdős–Rényi random generated graphs (generated using Python networkx’s
fast gnp generation method, using an average of 1.7 edges per vertex) show that our
new algorithm is still tractable for continental-sized graphs of millions of vertices. Inter-
estingly, MultiDijkstra also exhibits a much smaller variance than that of Mohri,
whose performance varies by more than one order of magnitude between runs.
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8. A Taxonomy of Semirings for
Provenance over Graph Databases

This last chapter will be divided in two parts. In Section 8.1, we first make the formal link
between the results of Section 2.3.1 and our framework, while obtaining a lower bound
for full path provenance computations. The second section mainly deals with Figure 8.1,
representing a summary of the algorithms we can use, depending on the properties of
the semiring of interest. Based on that, we finish by discussing some pending research
questions.

8.1. Lower Bounds
The main focus of this work has been to provide general methods for computing semiring
provenance for very large graph databases. Being able to provide an improved solution
– in terms of asymptotical complexity – to NodeElimination for full provenance com-
putation would have had a great impact. Very unfortunately, it became more and more
apparent, whilst establishing links to other problems arising in computer sciences, that
such an algorithm has never been discovered for related issues.

We finally found out results in the literature linking the complexity of performing
the asterate of a semiring-valuated matrix to the complexity of carrying out matrix
multiplication [Mehlhorn 1984]. This result allows a characterization of semirings on
which the monotone complexity – only using monotone operators ⊕ and ⊗ – for matrix
multiplication is cubic time. This work has been presented in Section 2.3, and we can
deduce the following corollary.

Corollary 8.1. The monotone complexity for square matrix asteration over an ω-
complete star semiring requires Ω(n3) semiring operations.

Proof. We can assume the size of the matrix to be fixed, given a specific entry. We can
thus reformulate any algorithm satisfying the above condition as a straight-line program.
We conclude using Property 2.24, Theorem 2.39, and Theorem 2.42.

This entails the fact that computing full provenance without considering any addi-
tional property of the semiring of use is not tractable in practice for large graphs such
as continental-sized transportation networks. This leaves open many research opportu-
nities, of which some have been investigated in this manuscript: finding new semiring
properties permitting better optimizations as in Chapter 6, discovering graph parame-
ters having the most impact on the efficiency of the algorithm as in Chapter 7, and later
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NodeElimination

star semirings
MatrixAsteration
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Figure 8.1.: Taxonomy of the semirings used for graph provenance along with algorithms
that work on them [Ramusat et al. 2021b].

on in Part III linking to Datalog provenance. Others opportunities will be discussed as
open research questions in Chapter 12.2.

8.2. A Hierarchy of Semirings
Figure 8.1 provides a high-level view linking the properties and classes of semiring we
presented in Section 2.2 and Chapter 5 together and their associated algorithms, pre-
sented in Chapter 5 and Chapter 6. The figure shows a clear hierarchy of classes of
semirings, both in terms of the complexity of the algorithm and the expressive power of
the semirings.

An important practical application that is similar to our setting is the provenance
for Datalog queries introduced in [Green et al. 2007] and further optimized using cir-
cuits [Deutch et al. 2014]. Datalog – refer to Section 1.2 for a quick introduction – is a
language derived from Prolog, useful for infering new knowledge given existing facts and
a set of inference rules. In the papers above, the semiring classes for which optimization
of queries is possible are strikingly similar: PosBool(X) and Sorp(X) discussed in [Green
et al. 2007; Deutch et al. 2014] correspond respectively to the positive fragment of the
Boolean function semiring, and to the free (i.e., most general) 0-closed semiring.

We have seen in Section 8.1 that the computation of the asteration of a matrix over
an arbitrary ω-complete semiring (i.e, using only semiring operations and not some
specific properties of the semiring of interest) is at least involving a cubic number of
semiring operations. Thus, the NodeElimination algorithm is optimal for computing
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the full path provenance. While the formal proof of this result was not known to us
by the midpoint of the thesis, we were strongly convinced it would not be possible to
significantly improve full provenance computation in the general case. We have decided
to turn our focus on Datalog provenance to benefit from the richness of the literature
and to propose new ways for solving path provenance by converting a graph database
into a Datalog query.

The reader will find in Perspectives some discussion about two other research oppor-
tunities we unfortunately did not had time to address during our doctoral studies:

• while Corollary 8.1 concerns the full matrix asteration, it could be interesting to
consider lower bounds on the computation of a restricted subset of the asteration
matrix (e.g., one single row for single-source, only one cell for single-pair);

• devising parallel algorithms built upon the notion of eliminants [Abdali 1994] to
provide an efficient computation of the full path provenance (understood as the
asteration of a matrix over a star semiring).
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Part III.

Datalog Provenance for Graph Queries
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There are two major notions of provenance for information systems currently in use
in the literature, each focusing on different usages. The first notion can be broadly
categorized as “informational”: the provenance encapsulates information about the de-
ductive process leading to a specific result. Declarative debugging is one application of
this concept. Analysis of provenance information in an interactive manner simplifies the
user’s burden of identifying which part of the rule specification is responsible for a faulty
derivation.

In this manuscript we consider a “computational” notion of provenance, where op-
erations (and queries) over provenance values are permitted. The initial definition of
the provenance of a Datalog program has been defined in Section 3.2 as a system of
equations over an ω-continuous semiring following the seminal paper of [Green et al.
2007].

Beyond that, some research has proposed other representation frameworks leveraging
the underlying properties of the semiring leading to optimized algorithms. It has been
shown in [Deutch et al. 2014] that, for a Datalog program having n candidate IDB tuples,
a circuit for representing Datalog provenance in the semiring Sorp(X) (the most general
absorptive semiring) only needs n + 1 layers. For binary relations, e.g., representing
the edge relation of a graph, this construction is at least quadratic in the number of
vertices, thus not practically applicable for the large real-world networks we target in
our research work. Similarly, in [Esparza et al. 2011], absorptive semirings (i.e., 0-closed
semirings) have the property that derivation trees of size ≥ n are “pumpable” (they
do not contribute to the final result). A concrete implementation [Esparza et al. 2014]
computes the provenance for commutative and idempotent semirings using n Newton
iterations.

Fairly recently, a paper of Khamis et al. [2021] introduced POPS (Partially Ordered,
Pre Semiring), a structure decoupling the order on which the fixed-point is computed
from the semiring structure. Complex and recursive computations over vectors, matrices,
tensors are now expressible using this framework. This approach and those of [Deutch
et al. 2014] and [Esparza et al. 2011] rarely go all the way to the implementation level
and are internally considering all possible IDB tuples, thus raising the question of the
applicability to real-world data.

A work of note that does come with an implementation is [Deutch et al. 2015; Deutch
et al. 2018] in cases where keeping the full provenance of a program (how-provenance)
is still prohibitively large. A relevant subset of the derivation trees is selected using
selection criteria based on tree patterns and ranking over rules and facts occurring in the
derivation. First, given a Datalog program P and a pattern q, an offline instrumentation
is performed, leading to an instrumented program Pq. Then, given any database D, an
efficient algorithm can be used to retrieve only the top-k best derivation trees for Pq(D).

We will present our contributions from [Ramusat et al. 2021a] in the four next chapters.
In Chapter 9 we focus on a correspondence between dynamic programming over hyper-
graphs (as introduced in [Huang 2008] under the name of weighted hypergraphs) and the
proof-theoretic definition of the provenance for Datalog programs. We provide both-way
translations and characterize for which class of semirings the best-weight derivation in
the hypergraph corresponds to the provenance of the initial Datalog program.
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The above mentioned translation led us to an adaption of Knuth’s generalization
of Dijkstra’s algorithm [Knuth 1977] to the grammar problem, adapted to the case of
Datalog provenance computation. This will be described in Chapter 10. In the special
setting where all hyperedges are of arity 1, we obtain the notion of semiring-based
provenance for graph databases described in Chapter 4. In the general setting, the
algorithm steadily generalizes to Datalog the adapted Dijkstra’s algorithm we presented
in Section 5.2, under the same assumptions on the properties of the underlying semiring.

Such algorithm is unlikely to be efficient as-is in practical contexts. The main issue is
closely related to the inefficiency of basic Datalog evaluation: many computations of facts
(provenance values) have already been deduced, leading to redundant computations. In
the same chapter we show that the semi-näıve evaluation strategy for Datalog is also
applicable in our setting.

In comparison to the line of work of [Khamis et al. 2021], our method is restricted
to semirings that are totally ordered (a subclass of distributive dioids1), leveraging the
invariant that once a fact is first labeled with a provenance value, we are certain it is
the correct one. The top-1 algorithm of [Deutch et al. 2015; Deutch et al. 2018] is also
closely related to our solution, but does not mention the use of a priority queue nor does
it take into account the optimization provided by the semi-näıve evaluation strategy we
describe in Chapter 10. The best-first method we outline in this manuscript can thus
be seen as a hybrid of the ideas introduced in [Khamis et al. 2021] and [Deutch et al.
2018].

An added advantage is that it greatly facilitates the extension of existing Datalog
solvers to compute provenance annotations. We discuss in Chapter 11 of our imple-
mentation based on Soufflé [Jordan et al. 2016], a state-of-the-art Datalog solver, for
the best-first method. We applied our solution to process rich graph queries (translated
into Datalog programs) on several real-world and synthetic graph datasets, as well as to
Datalog programs used in previous works [Deutch et al. 2018]. Still in the same chapter,
we provide experimental results witnessing that the performance of the implementation
competes with the efficiency of dedicated solutions for graph databases that have been
evaluated in Chapter 7.

The link we established with the framework of weighted hypergraphs, and hence, with
the grammar problem, opens up new opportunities and challenges for semiring-based
provenance for Datalog programs. We will discuss in Chapter 12 selected topics and
problems that can now be understood as closely linked to the provenance framework for
Datalog programs of Green et al. [2007].

1Distributive dioids are POPS structures over a distributive lattice being the natural order of the
dioid.
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9. Datalog Provenance and Dynamic
Programming over Hypergraphs

In [Ramusat et al. 2021a] we showed how to convert a Datalog program into a weighted
hypergraph (as introduced in [Huang 2008]) and characterized the semirings where the
best-weight derivation in the hypergraph corresponds to the provenance for the initial
Datalog program, mimicking the proof-theoretic definition.

9.1. Best-Weight Derivation
We first recall basic definitions and notation related to hypergraphs.
Definition 9.1 (Weighted hypergraph [Huang 2008]). Given a semiring S, a weighted
hypergraph on S is a pair H = ⟨V, E⟩, where V is a finite set of vertices and E is a
finite set of hyperedges, where each element e ∈ E is a triple e = ⟨h(e), T(e), fe⟩ with
h(e) ∈ V its head vertex, T(e) ∈ V an ordered list of tail vertices and fe a weight
function from S|T(e)| to S.

We note |e| = |T(e)| the arity of a hyperedge. If |e| = 0, we say e is nullary and
then fe() is a constant, an element of the semiring; we assume there exists at most one
nullary edge for a given vertex. In that case, v = h(e) is called a source vertex and we
note fe() as fv. The arity of a hypergraph is the maximum arity of any hyperedge.

The backward-star BS(v) of a vertex v is the set of incoming hyperedges {e ∈ E |
h(e) = v}. The graph projection of a hypergraph H = ⟨V, E⟩ is a directed graph
G = (V, E ′) where E ′ = {(u, v) | ∃e ∈ BS(v), u ∈ T(e)}. A hypergraph H is acyclic if
its graph projection G is acyclic; then a topological ordering of H is an ordering of V
that is a topological ordering of G.

With these definitions in place, we can encode a Datalog program with semiring
annotations as a weighted hypergraph in a straightforward manner:
Definition 9.2 (Hypergraph representation of a Datalog query [Ramusat et al. 2021a]).
Given a Datalog program q as a set of rules {q1, · · · , qn} and the semiring S used for
annotations, we define the weighted hypergraph representation of q as Hq = ⟨Vq, Eq⟩ with
Vq being all ground atoms and, for each instantiation of a rule t(x⃗)← r1(x⃗1), . . . , rn(x⃗n),
a corresponding edge ⟨t(x⃗), (r1(x⃗1), . . . , rn(x⃗n)),⊗⟩. For a fact R(x⃗) ∈ EDB(q) we add a
nullary edge e with h(e) = R(x⃗) and fe = provq

R(x⃗).
The notion of derivations is the hypergraph counterpart to paths in graph. We recall

the definition of derivations and we define it in a way that is reminiscent of Datalog-
related notions.
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Definition 9.3 (Derivation in hypergraph [Huang 2008]). We recursively define a deriva-
tion D of a vertex v in a hypergraph H (as a pair formed of a hyperedge and a list of
derivations), its size |D| (a natural integer) and its weight w(D) (a semiring element)
as follows:

• If e ∈ BS(v) with |e| = 0, then D = ⟨e, ⟨⟩⟩ is a derivation of v, |D| = 1, and
w(D) = fe().

• If e ∈ BS(v) with |e| ≥ 0, Di is a derivation of Ti(e) for i = 1 . . . |e|, then
D = ⟨e, ⟨D1 · · ·D|e|⟩⟩ is a derivation of v, |D| = 1 + ∑|e|

i=1 |Di|, and its associated
weight is w(D) = fe(w(D1), . . . , w(D|e|)).

We note DH(v) the set of derivations of v in H.

When modeling Datalog provenance in a semiring S as weighted hypergraphs on S,
all non-source weight functions are bound to the ⊗ operation of the semiring. Note that,
if S is idempotent, the natural order on S induces an ordering on derivations: D ≤ D′

if w(D) ≤ w(D′).
We now show that in this formalism, the Datalog provenance of an output predicate

can be understood as the best-weight for the corresponding vertex in the hypergraph.

Definition 9.4 (Best-weight [Huang 2008]). The best-weight δH(v) of a vertex v of a
hypergraph H on a semiring (S,⊕,⊗, 0̄, 1̄) is the weight of the best derivation of v:

δH(v) =
{

fv if v is a source vertex;⊕
D∈DH(v) w(D) otherwise.

The best-weight generally requires additional properties of either the hypergraph or
the semiring to be well-defined. Acyclicity for the hypergraph is a sufficient condition.
Existence of an infinitary summation operator in the semiring extending⊕, guaranteed in
ω-continuous semirings, is also a sufficient condition. To guarantee semantics compatible
with the intuitive meaning of provenance, we need to consider, at least, ω-complete star-
semirings.

9.2. Equivalence with Datalog Provenance
We can now show that Datalog provenance can be computed through the formalism
of weighted hypergraphs. Let us start with a lemma exhibiting a one-to-one mapping
between derivations in the hypergraph and proof trees in Datalog.

Lemma 9.5 ([Ramusat et al. 2021a]). For any Datalog query q and grounding of an
atom v of q, there is a bijection between DHq(v) and {τ | τ yields v}.

Proof. By definition of Hq each instantiation of a rule corresponds to a unique hyperedge.
Then, we can inductively construct for a given derivation D its associated (unique)
Datalog proof tree τD:

75



9. Datalog Provenance and Dynamic Programming over Hypergraphs

• If |D| = 1, then v is a source vertex and thus an extensional tuple, we get the
empty proof.

• If |D| ≥ 1, then there exists e ∈ BS(v) where |e| ≥ 0 and Di a derivation of
Ti(e) for 1 ≤ i ≤ |e|, where D = ⟨e, D1 · · ·D|e|⟩. By definition, this hyperedge
corresponds to the grounding of a rule t(x⃗) ← r1(x⃗1), . . . , rn(x⃗n). By induction,
for 1 ≤ i ≤ |e|, τDi

is the corresponding proof of the derivation Di. Then by
composition we obtain τD the proof for D.

We then show that the weight of each derivation of a tuple is equal to the corresponding
proof tree weight in Datalog.

Lemma 9.6 ([Ramusat et al. 2021a]). For any Datalog query q and grounding of an
atom v of q, for any derivation D of v in Hq w(D) = ⊗

t′∈ leaves(τD)
provq

R(t′) where τD is

the proof tree corresponding to D in the bijection given by Lemma 9.5.

Proof. By induction on the size of the derivation D:

• If |D| = 1 then, there exists a nullary edge e ∈ Eq with h(e) = v and w(D) = fv =
provq

R(r(x⃗)) = ⊗
t′∈ leaves(τD)

provq
R(t′).

• If |D| ≥ 1 then there exists e ∈ Eq and D is of the form ⟨e, D1 · · ·D|e|⟩ with Di a
derivation of Ti(e) for 1 ≤ i ≤ |e|. We have w(D) = fe(w(D1), . . . , w(D|e|)) and
by definition of fe = ⊗ and by IHP w(D) = ⊗

t′∈ leaves(τD)
provq

R(t′).

Finally, we obtain:

Theorem 9.7 ([Ramusat et al. 2021a]). Let t be a tuple of a Datalog program q with
output predicate G and Hq its hypergraph representation, then provq

G(t) = δHq(G(t)).

Proof.

δHq(t) = ⊕
D∈DHq (G(t))

w(D) and by Lemma 9.6,

= ⊕
D∈DHq (G(t))

( ⊗
t′∈ leaves(τD)

provq
R(t′)

)
and by Lemma 9.5,

= ⊕
τ yields t

( ⊗
t′∈ leaves(τ)

provq
R(t′)

)
= provq

G(t)
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10. Best-First Method
We start this section with a little reminder of semiring theory. Huang [2008] introduced
the notion of superiority of a semiring S with respect to a partial order ≤, defined by:
∀a, b ∈ S a ≤ a ⊗ b, b ≤ a ⊗ b. We prove the natural order satisfies this notion for
0-closed semirings:

Lemma 10.1 ([Ramusat et al. 2021a]). Let S be an idempotent semiring and ≤ the
natural order over S. Then S is superior with respect to ≤ if and only if S is 0-closed.

Knuth [1977] generalized the Dijkstra algorithm to what he calls the grammar problem
(i.e., finding the best-weight derivation from a given non-terminal, where each terminal
has a specific weight and each rule comes with an associated weight function). This
has been identified as corresponding to the search problem in a monotonic superior
hypergraph – for each e ∈ H, fe is monotone and superior in each argument (see Table
3 in [Huang 2008]). Lemma 10.1 shows that superiority corresponds to 0-closedness in
semirings with natural orders. The definition of the grammar problem assumes a total
order on weights as the weights are real numbers. In the special case where all hyperedges
are of arity 1 (and all weight functions bound to ⊗), we obtain the classical notion of
semiring-based provenance for graph databases [Ramusat et al. 2021b]. Thus, Knuth’s
algorithm can be seen as a generalization to hypergraphs (and therefore, by the results
of the previous section, to Datalog provenance computation) of the modified Dijkstra
algorithm we presented in [Ramusat et al. 2021b], working on 0-closed totally-ordered
semirings, which are generalizations of the tropical semiring.

10.1. Näıve Version and Optimizations
We present as Algorithm 9 the Best-first method, the reformulation of the Knuth’s
algorithm in terms of semiring-based Datalog provenance, the basis of the optimizations
that will be introduced later.

Optimized version of Best-first method In the original paper of Knuth [1977], the
question of efficient construction of the set of candidate facts for the extraction of the
minimal-valued fact is not dealt with. A lot of redundant work may be carried out if
the implementation is not carefully designed.

In the following, we show how to obtain a ready-to-be-implemented version incorpo-
rating ideas from the semi-näıve evaluation of Datalog programs. Semi-näıve evaluation
of Datalog, as described in [Abiteboul et al. 1995, Chapter 13] introduces a number of
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Algorithm 9 Näıve version of Best-first method for Datalog provenance [Ramusat et al.
2021a]
Input: Datalog query q, EDB D with provenance indications over a 0-closed totally-

ordered semiring S.
Output: full Datalog provenance for the IDB of q over D.

1: I ← ∅
2: Let ν be the function that maps all facts of D to their annotation in S and all

potential facts of the intensional schema of q to 0̄
3: repeat
4: for each intensional fact r(x⃗) /∈ I do
5: ν(r(x⃗)) ⊕= ⊗

1≤i≤n
ν(ri(x⃗i)) for each instantiation of a rule

r(x⃗) ← r1(x⃗1), . . . , rn(x⃗n) with ri(x⃗i) ∈ D ∪ I
6: end for
7: Add to I the tuple r( ⃗xmin) such that ν(r( ⃗xmin)) is ≤-minimal among all potential

intensional facts r(x⃗) not in I
8: until ν(r( ⃗xmin)) = 0̄ or I contains all potential intensional facts
9: return ν|I

ideas aiming at improving the efficiency of the näıve Datalog evaluation method; we
show how to leverage these tricks in our setting.

The näıve evaluation of a Datalog program q processes iteratively, applying at each
step the consequence operator Tq. Many redundant derivations are computed, leading to
practical inefficiency. The semi-näıve evaluation addresses this problem by considering
only facts derived using at least one new fact found at the previous step. Note, however,
whereas many new facts can be found at one step of the semi-näıve evaluation, only one
is to be added by the Best-first method to respect the ≤-minimality ordering of added
facts.

This algorithm starts by initializing the priority queue with IDB facts that are derivable
from EDB facts. Then, at each step, the minimum valued-fact is added, and only
derivations using this new fact are computed to update the value of the facts in I. This
algorithm stops whenever the maximal value is reached for a candidate fact, or the list
is empty (because the minimal value of the list is by default the maximal value of the
semiring).

Theorem 10.2 ([Ramusat et al. 2021a]). Algorithm 10 computes the full Datalog prove-
nance for 0-closed totally-ordered semirings.

Proof. We show the algorithm verifies the following invariant: whenever a tuple is added
to I in Line 12, it has optimal value. This implies that I is populated in increasing order:
each new derivation computed in the Relax procedure only updates the priority queues
with values greater than the value of the tuple relaxed (by superiority of ⊗).

Suppose by contradiction that some output tuples are not correctly labeled and take
such a minimal tuple ν = r(x⃗). At the moment where ν is extracted with value n let
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Algorithm 10 Basic semi-näıve version of Best-first method for Datalog prove-
nance [Ramusat et al. 2021a]
Input: Datalog query q, EDB D with provenance indications over a 0-closed totally-

ordered semiring S.
Output: full Datalog provenance for the IDB of q.

1: def Relax(r0(x⃗0), E):
2: for each instantiation of a rule r(x⃗) ← r1(x⃗1), . . . , rm(x⃗m), · · · , rn(x⃗n)

where ri(x⃗i) ∈ D ∪E ∪ {r0(x⃗0)}, 1 ≤ i < m, rm(x⃗m) = r0(x⃗0) and ri(x⃗i) ∈ D ∪E,
m < i ≤ n do

3: ν(r(x⃗)) ⊕= ⊗
1≤i≤n

ri(x⃗i)
4: end for
5:
6: I ← ∅
7: Let ν be the function that maps all facts of D to their annotation in S and all

potential facts of the intensional schema of q to 0̄
8: for each intensional atom r(x⃗) /∈I do
9: ν(r(x⃗)) ⊕= ⊗

1≤i≤n
ri(x⃗i) for each instantiation of a rule

r(x⃗) ← r1(x⃗1), . . . , rn(x⃗n) with ri(x⃗i) ∈ D
10: end for
11: while minν\I r(x⃗) ̸= 0̄ do
12: Add such minimal r(x⃗) to I
13: Relax(r(x⃗), I \ r(x⃗))
14: end while
15: return ν

us consider an optimal derivation path of ν that leads to the optimum value opt < n.
By superiority each tuple occurring in the tail of the rule has value less than opt. Thus
a tuple occurring in the tail is either wrong-valued or not present in I at the moment
where ν is found. In both cases and because tuples are added to I in increasing order
we obtain a new minimal tuple incorrectly labeled by the algorithm, contradicting the
hypothesis.

The structure of the Datalog program can be analysed to provide clues about the
predicates to focus on. Following [Abiteboul et al. 1995], we introduce the notion of
precedence graph GP of a Datalog program P . The nodes are the IDB predicates and
the edges are pairs of IDB predicates (R, R′) where R′ occurs at the head of a rule of P
with R belonging to the tail. P is a recursive program if GP has a directed cycle. Two
predicates R and R′ are mutually recursive if R = R′ or R and R′ participate in the
same cycle of GP . This defines equivalence classes. Putting it together, we obtain as
Algorithm 11 our final algorithm. This approach reduces the load of the priority queue
thus mitigating the cost of extracting the minimal element (Line 12 of Algorithm 10).
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Algorithm 11 Semi-näıve version of Best-first method for Datalog provenance [Ramusat
et al. 2021a]
Input: q a Datalog query with provenance indication over a 0-closed totally-ordered

semiring S.
Output: full Datalog provenance for the IDB of q.

1: Compute the equivalence classes of q
2: for each equivalence class in a topological order do
3: Apply Algorithm 10 over IDB predicates in the equivalence class
4: considering previous equivalence classes as EDB predicates
5: end for
6: return ν

10.2. Generalization to Distributive Lattices
We outlined a new algorithm in Chapter 6 based on Dijkstra’s algorithm and solving the
single-source provenance in graph databases with provenance indications over 0-closed
multiplicatively idempotent semirings (equivalents to distributive lattices). This new
method stems from a tentative to bridge the strong complexity gap for computing the
provenance in the case of a semiring not 0-closed and totally ordered. A similar gap also
appears when we consider provenance over Datalog queries. Thus, we show how to apply
this method for computing provenance for Datalog queries over distributive lattices.

We provide a brief review of the key ideas presented in Chapter 6. Any element of
a distributive lattice is decomposable into a product of join-irreducible elements of the
lattice, and there exists an embedding of the distributive lattice into a chain decompo-
sition of its join-irreducible elements. This ensures we can 1) work on a totally ordered
environment and apply algorithms that require total ordering over the elements, 2) inde-
pendently compute partial provenance annotations for each dimension to form the final
provenance annotation. Given m the number of dimensions in the decomposition, our
solution (described in Algorithm 12) performs m launches of the Best-first method and
thus, roughly has a cost increased by a factor m.

Algorithm 12 Generalized Best-first method for Datalog provenance [Ramusat et al.
2021a]
Input: q a Datalog query with provenance indication over a 0-closed multiplicatively

idempotent semiring S.
Output: full Datalog provenance for the IDB of q.

1: for each EDB fact R(x⃗) do
2: Decompose(R(x⃗))
3: end for
4: for each dimension i do
5: νi ← Best-first(q, i)
6: end for
7: return Recompose(ν1, . . . , νn)
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11. Implementation and Experiments
In numerous application domains, Datalog is used as a domain specific language (DSL)
to express logical specifications, e.g. for static program analysis. A formal specifica-
tion, written as a declarative Datalog program is usually translated into an efficient
imperative implementation by a synthesizer. This process simplifies the development of
program analysis compared to hand-crafted solutions (highly optimized C++ applica-
tions specialized in enforcing a fixed set of specifications). Soufflé [Jordan et al. 2016;
Scholz et al. 2016] has been introduced to provide efficient synthesis of Datalog spec-
ifications to executable C++ programs, competing with state-of-the-art handcrafted
code for program analysis. The inner workings of Soufflé were of interest to our work
from [Ramusat et al. 2021a]; the algorithm implementations are similar to the evalua-
tion strategy followed by the Best-first method we introduced here. We present a brief
overview of the architecture of Soufflé and discuss how we extended it.

11.1. Architecture and Implementation
Following what is described in [Jordan et al. 2016], an input datalog program q goes
through a staged specialization hierarchy. After parsing, the first stage of Soufflé
specializes the semi-näıve evaluation strategy applied to q, yielding a relational algebra
machine program (RAM). Such a program consists in basic relational algebra operations
enriched with I/O operators and fix-point computations. As a final step, the RAM
program is finally either interpreted or compiled into an executable. For this work,
we have only used the interpreter. Our code was inserted in two different stages of
Soufflé: a new translation strategy from the parsed program to the RAM program,
a priority queue, replacing the code in charge of adding at run-time the tuples to the
relations.

We showcase the result of our translation strategy in Algorithms 13, 14, and 15 for a
Datalog query computing the transitive closure of a graph; this program is given in Al-
gorithm 13 in its Soufflé syntax. Algorithm 14 presents the corresponding Soufflé
RAM program resulting from applying the semi-näıve evaluation strategy and Algo-
rithm 15 our modification to the RAM program to provide provenance annotation via
the Best-first strategy and use the priority queue pq for provenance computation. The
⊥ notation corresponds to a wildcard. Importantly, modifying directly at the RAM level
of Soufflé allowed us to benefit of all implemented optimizations.
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Algorithm 13 Input Datalog program computing the transitive closure (Soufflé syn-
tax) [Ramusat et al. 2021a]

1: .decl edge(s:number, t:number[, @prov:semiring value])
2: .input edge
3: .decl path(s:number, t:number[, @prov:semiring value])
4: .output path
5: path(x, y) :- edge(x, y).
6: path(x, y) :- path(x, z), edge(z, y).

Algorithm 14 Corresponding Soufflé RAM program for Algorithm 13 [Ramusat et al.
2021a]

1: if ¬(edge = ∅) then
2: for t0 in edge do
3: add (t0.0, t0.1) in path
4: add (t0.0, t0.1) in δpath
5: end for
6: end if
7: loop
8: if ¬(δpath = ∅) ∧ ¬(edge = ∅) then
9: for t0 in δpath do

10: for t1 in edge on index t1.0 = t0.1 do
11: if ¬(t0.0, t0.1) ∈ path then
12: add (t0.0, t0.1) in path’
13: end if
14: end for
15: end for
16: end if
17: if path’ = ∅ then
18: exit
19: end if
20: for t0 in path’ do
21: add (t0.0, t0.1) in path
22: end for
23: swap δpath with path’
24: clear path
25: end loop
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11. Implementation and Experiments

Algorithm 15 Modification of RAM program of Algorithm 14 to implement Best-first
strategy [Ramusat et al. 2021a]

1: if ¬(edge = ∅) then
2: for t0 in edge do
3: update (t0.0, t0.1, t0.prov) in path
4: end for
5: for t0 in path do
6: add (t0.0, t0.1, t0.prov) in δpath
7: end for
8: end if
9: loop

10: if ¬(δpath = ∅) ∧ ¬(edge = ∅) then
11: for t0 in δpath do
12: for t1 in edge on index t1.0 = t0.1 do
13: if ¬(t0.0, t1.1, ⊥) ∈ path then
14: update (t0.0, t0.1, t0.prov ⊗ t1.prov) in pq
15: end if
16: end for
17: end for
18: end if
19: clear δpath
20: if pq is empty then
21: exit
22: end if
23: add pq.top() in pq.top().relation and in pq.top().δrelation
24: end loop

11.2. Experiments
Our implementation was tested on an Intel Xeon E5-2650 computer with 176 GB of
RAM. The source code is freely available on Github1.

The initial motivation for this work stemmed from a key observation we outlined at
the end of Chapter 8. We pointed out the similarity between Datalog and the classes of
semirings and their optimized provenance algorithms discussed in that work, focused on
graph provenance algorithms. To translate this graph setting into Datalog, the graph
structure has been encoded into an EDB with one binary predicate edge encoding the
edges, and with edge annotations depending on the provenance semiring we chose. We
run the transitive closure Datalog program outlined in Algorithm 13. Full information
on the graph datasets used can be found in Chapter 7. We provide, in Figure 11.1, a
comparison between the best-first method introduced here (Soufflé-prov), the plain

1https://github.com/yannramusat/souffle-prov
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Figure 11.1.: Comparison between algorithms for all-pairs shortest-distances (Tropical).
Values greater than 100 000 s are timeouts.
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Figure 11.2.: Comparison between algorithms for single-source shortest-distances (Trop-
ical).

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M
0

1

2

3

4

Output DB size

tim
e

(s
)

Soufflé-prov
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Figure 11.3.: Comparison between Soufflé and Soufflé-prov (IRIS)
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Figure 11.4.: Comparison between Soufflé and Soufflé-prov (AMIE)

Soufflé without provenance computation, and a previous provenance-based algorithm
for graphs introduced in Chapter 5 computing all-pairs shortest-distances over graph
databases (the NodeElimination algorithm, with a choice of node to eliminate based
on its id or its degree), in the tropical semiring. Similarly, in Figure 11.2, we com-
pare with previous solutions for single-source shortest-distances, in the same semiring,
in particular the adaptation of Dijkstra algorithm described in Chapter 5, and, for
comparison purposes, a Bfs algorithm that does not compute provenance. The main
focus of this work was to provide an effective Datalog based solution for all-pairs prove-
nance in graph databases. For the all-pairs problem, depending on the dataset, (see,
e.g., Yeast), Soufflé-Prov is significantly faster than the previous best known algo-
rithm, NodeElimination. Unsurprisingly, BFS and Dijkstra perform respectively
better than Soufflé and Soufflé-prov in the single-source context. What favors
both graph algorithms strongly is the fact that they reduce redundant computation: the
algorithms abort whenever the target vertex has been reached. Soufflé-prov performs
between 1 and 2 orders of magnitude faster than Mohri, yet another provenance-based
algorithm from Chapter 5. This fact highlights the potential of adapting the best-first
method to also handle k-closed semirings.

We now turn to evaluating the overhead induced by adding provenance computations
to Datalog via Soufflé. This appears fairly modest in the experiments of Figures 11.1,
11.2. We further consider two datasets that go beyond the setting of graph databases:
a non-recursive query over synthetic data (IRIS [Deutch et al. 2015], obtained from the
authors of that paper) in Figure 11.3 and a program over a knowledge base (AMIE
[Galárraga et al. 2013], available online2) populated with real-world data and automatic
rules in Figure 11.4. The evaluation was made by varying the output database size. In
IRIS, the overhead induced is a modest constant factor of approximately 4 times the
original cost. This is not the case for AMIE, where the overhead tends to increase with
the size of the answer. We conjecture this is due to the lack of native support for tuple
updates in Soufflé (in Datalog, the fixed-point operator is inflationary); this leads to
inefficiency in updating provenance values associated to each tuple.

2https://bitbucket.org/amirgilad/selp/src/Journal/
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12. Reverse Translations and
Opportunities

Our focus so far in the study from [Ramusat et al. 2021a] was to express Datalog pro-
grams into hypergraphs. We also considered the opposite direction: given a weighted
hypergraph H with all its weight functions derived from a semiring S via its ⊗ operator,
we aim to design an equivalent Datalog program which computes the provenance on the
given semiring. We proposed two translations: one quite straightforward, and another
one with a fixed program, to benefit of the low data complexity of Datalog.

12.1. From Weighted Hypergraphs to Datalog Programs
Definition 12.1 (Weighted hypergraph to Datalog program [Ramusat et al. 2021a]).
Given a hypergraph H = ⟨V, E⟩ of maximal hyperedge arity n, we define a Datalog
query qH with extensional predicates En of arity n + 1 for 0 ≤ i ≤ n and a unary
intensional predicate R. For each 1 ≤ i ≤ n, we add a single rule of the form: R(x)←
Ei+1(x, x1, . . . , xn), R(x1), . . . , R(xn), degenerating into R(x) ← E1(x) for i = 0. For
each e ∈ E of arity n ≥ 1, we populate En+1 with En+1(h(e), T(e)) having provenance
value 1̄. Since source vertices (i.e., heads of nullary edges) may have an initial constant
value s ∈ S, for each e ∈ E of arity 0 we tag E1(h(e)) with the provenance value fe.

Let us start with a lemma showing the one-to-one correspondence between derivations
in the hypergraph and proof trees in Datalog.
Lemma 12.2 ([Ramusat et al. 2021a]). Given a vertex v ∈ V of the hypergraph, DH(v)
is in one-to-one correspondance with {τ | τ yields v}.
Proof. By definition of qH each rule corresponds to a unique hyperedge. Then, we can
inductively construct for a given derivation D its associated (unique) Datalog proof τD:

• If |D| = 1, then v is a source vertex (head of a nullary hyperedge). Thus, the
corresponding proof is the single instantiation of the rule R(v)← E1(v).

• If |D| ≥ 1, then it exists e ∈ BS(v) where |e| ≥ 0 and Di is a derivation of Ti(e)
for 1 ≤ i ≤ |e|, then D = ⟨e, D1 · · ·D|e|⟩ is a derivation of v. By definition, this
edge corresponds to a single rule:

R(v)← Ei+1(v, T1(e), . . . , T|e|(e)), R(T1(e)), . . . , R(T|e|(e)).

By IHP, for 1 ≤ i ≤ |e|, τDi
is the corresponding proof of the derivation Di. Then

by composition we obtain τD the proof for D.
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We then show the weight of each derivation of a tuple is equal to the corresponding
proof weight in Datalog.

Lemma 12.3 ([Ramusat et al. 2021a]). w(D) = ⊗
t′∈ leaves(τD)

provqH
E1,...,En+1(t′)

Proof. By induction on the size of the derivation D:

• If |D| = 1 then, there exists a nullary edge e ∈ E with h(e) = v and w(D) = fe =
provqH

E1 (e) = ⊗
t′∈ leaves(τD)

provqH
E1,...,En+1(t′).

• If |D| ≥ 1 then it exists e ∈ E and D is of the form ⟨e, D1 · · ·D|e|⟩ with Di a
derivation of Ti(e) for 1 ≤ i ≤ |e|. We have w(D) = fe(w(D1), . . . , w(D|e|)) and
by definition of fe = ⊗ and by IHP w(D) = ⊗

t′∈ leaves(τD)
provqH

E1,...,En+1(t′).

And then we have:

Theorem 12.4 ([Ramusat et al. 2021a]). Let v be a vertex of a weighted hypergraph
H with all weight functions derived from the ⊗ operation of a semiring S and qH its
translation into a Datalog query, then δH(v) = provqH

R (v).

Proof of Theorem 12.4.

δH(t) = ⊕
D∈DH(v)

w(D) and by Lemma 12.3,

= ⊕
D∈DH(v)

( ⊗
t′∈ leaves(τD)

provqH
E1,...,En+1(t′)

)
and by Lemma 12.2,

= ⊕
τ yields t

( ⊗
t′∈ leaves(τ)

provqH
E1,...,En+1(t′)

)
= provqH

R (t)

Let us know consider the case of programs where we have a fixed schema and arity:

Definition 12.5 (Weighted hypergraph to Datalog program with fixed schema [Ramusat
et al. 2021a]). Given an hypergraph H = ⟨V, E⟩ let us consider the following Datalog
program qHf

over unary predicates H, R and Nullary, binary predicates E, N , First and
End, and ternary predicate Next:

R(x)← E(x, e), H(e)
H(e)← First(e, x), R(x), N(e, x) N(e, x)← Next(e, x, y), R(y), N(e, y)

← Nullary(e) ← End(e, x)
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For each e ∈ E of arity n ≥ 1, we populate E with E(h(e), e) with provenance value 1̄.
Let x1, . . . , xn be the elements of T(e)), we populate First with First(e, x1), Next with
Next(e, xi, xi+1) for 1 ≤ i ≤ n−1 and End with End(e, xn); all have provenance value 1̄.

Source vertices (heads of nullary edges) may have an initial constant value s ∈ S, then
for each e ∈ E of arity 0 we tag E(h(e), e) with the provenance value fe and Nullary(e)
with provenance value 1̄.

The reasoning follows a similar flow:

Lemma 12.6 ([Ramusat et al. 2021a]). Given a vertex v ∈ V of the hypergraph,
DHf

(v) ≃ {τ | τ yields v}.

Proof. We inductively construct for a given derivation D its associated (unique) Datalog
proof τD:

• If |D| = 1, then v is a source vertex (head of a nullary hyperedge e). Thus, the
corresponding proof is composed of R(v)← E(v, e), H(e) and H(e)← Nullary(e).

• If |D| ≥ 1, then there exists e ∈ BS(v) where |e| ≥ 0 and Di is a derivation of
Ti(e) for 1 ≤ i ≤ |e|, then D = ⟨e, D1 · · ·D|e|⟩ is a derivation of v. Let v1, . . . , vn

be the elements of T(e)), this hyperedge corresponds to the following proof tree:

R(v) ← E(v, e), H(e)
H(e) ← First(e, v1), R(v1), N(e, v1)
For 1 ≤ i ≤ n− 1 :
N(e, vi) ← Next(e, vi, vi+1), R(vi+1), N(e, vi+1)
N(e, vn) ← End(e, vn)

By IHP, for 1 ≤ i ≤ |e|, τDi
is the corresponding proof of the derivation Di

(derivation of the fact R(vi)). Then, by composition, we obtain τD the proof for
D.

Lemma 12.7 ([Ramusat et al. 2021a]). w(D) = ⊗
t′∈ leaves(τD)

prov
qHf

E,Nullary,First,Next,End(t′)

Proof. By induction on the size of the derivation D:

• If |D| = 1 then there exists a nullary edge e ∈ E with h(e) = v and its associated
(unique) derivation is R(v)← E(v, e), H(e) and H(e)← Nullary(e). Thus w(D) =
fe = prov

qHf

E (v, e) ⊗ prov
qHf

Nullary(e).

• If |D| ≥ 1 then there exists e ∈ E and D is of the form ⟨e, D1 · · ·D|e|⟩ with Di

a derivation of Ti(e) for 1 ≤ i ≤ |e|. The derivation tree given in Lemma 12.6
corresponding to the hyperedge has provenance:

prov
qHf

E (v, e) ⊗ prov
qHf

First(e) ⊗ prov
qHf

R (v1)⊗⊗
1≤i≤n−1

(
prov

qHf

Next(e, vi, vi+1)⊗ prov
qHf

R (vi+1)
)
⊗ prov

qHf

End(e, vn)
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By IHP, for 1 ≤ i ≤ |e|, w(Di) = prov
qHf

R (vi), thus, we obtain

w(D) =
⊗

t′∈ leaves(τD)
prov

qHf

E,Nullary,First,Next,End(t′).

Theorem 12.8 ([Ramusat et al. 2021a]). Let v be a vertex of a weighted hypergraph
H with all weight functions derived from the ⊗ operation of a semiring S and qHf

its
translation into a Datalog query with fixed schema, then δHf

(v) = prov
qHf

R (v).

Proof of Theorem 12.8. We note EDB = {E, Nullary, First, Next, End}.

δHf
(t) = ⊕

D∈DHf
(v)

w(D) and by Lemma 12.7,

= ⊕
D∈DHf

(v)

( ⊗
t′∈ leaves(τD)

prov
qHf

EDB(t′)
)

and by Lemma 12.6,

= ⊕
τ yields t

( ⊗
t′∈ leaves(τ)

prov
qHf

EDB(t′)
)

= prov
qHf

R (t)

12.2. Case Study: AND/OR Graphs
Section 4.3 of [Huang 2008] showcases some formalisms in which equivalent hypergraphs
can be constructed in the dynamic programming framework proposed in their work.
One advantage is that we can directly benefit from these translations in our Datalog
provenance framework. However, there are some issues with these translations, as we
now discuss.

One example formalism that can be easily translated to our setting are the AND/OR
graphs, a special case of graphs – e.g., used in scheduling tasks – in which nodes can
express two types of restrictions: AND restrictions (in which tasks have to executed
sequentially) and OR restrictions (in which tasks can be overlapping). These two oper-
ations, not unlike the ⊗ and ⊕ operations on semirings, suggest our translation strategy
is readily usable. Indeed, by our translation, vertices of the hypergraph would represent
OR vertices and the hyperedges correspond to the AND vertices. This translation does
not add any other restriction to the shape of the AND/OR graph. AND and OR vertices
can have multiples outgoing edges and the AND/OR graph is not necessarily bipartite.
However, not all applications in which AND/OR graphs are useful can be used with
semiring operations. For instance, scheduling using AND/OR graphs [Adelson-Velsky
et al. 2002; Dinitz et al. 2011] requires three operations (min, max and +) instead of the
two allowed using semirings.

Another crucial issue, not obvious at first glance, is that when expressing these graphs
into our Datalog framework the semantics can change. As explained in [Dinitz et al.

89



12. Reverse Translations and Opportunities

2011], zero-edge cycles express mutual events (occurring in groups, with no causal re-
lations): either they all occur together or none of them do. In a deductive system,
where semantics is given by a least fixed-point, they are believed to not occur at all.
The semantics of Datalog provenance or derivation trees cannot express this situation:
in Datalog there would be no finite proof of a set of given facts. However, adding all
of these facts to the solution would not break the deductive rules; simply they do not
belong to the least fixed-point. Thus we wonder if using a carefully choosen ω-complete
semiring under the proof-theoretic definition for Datalog provenance could provide sound
semantics for this case.

90



Perspectives
In conclusion to the research we pursued during this PhD, we emphasize some of the
issues that are left open and the resulting research opportunities.

We surveyed in the preliminaries a considerable amount of technical results having
strong impact on our work. We have seen that ω-continuous structures connect an
infinite summation operator given by an ω-complete structure to the natural order. This
has notably been pointed out in [Karner 1992]; their work also provides a characterization
of continuous structures, without mentioning any order (see Proposition 5.6 therein).
This structure permits to give a sound theoretical basis to the notion of least fixpoint
equations involving semirings. One question is if all ordered semirings can be extended
to a continuous structure. Theorem 2.37 has shown this is almost true by proving
that each ordered semiring can be embedded into a finitary semiring. We recall that a
finitary semiring need not be necessarily continuous (e.g., [Karner 1992, Fact 5.1]). If
all naturally ordered semirings can be embedded into a continuous structure, it would
surely simplify our task: we would have to only exhibit the natural order to make sure
to conform to the specifications of our model. This is certainly easier than finding an
embedding into a structure and then proving the new structure to be continuous.

While working on the provenance model for graph databases, we underlined two points
of future focus. We established Corollary 8.1, which concerns only the full matrix astera-
tion. It could be interesting to consider lower bounds on the computation of a restricted
subset of the asteration matrix (e.g., one single row for single-source, only one cell for
single-pair). We observed it was rarely possible to obtain an algorithm such as Dijkstra’s,
being able to solve only one row of the asteration matrix. This requires a specific set
of properties over the semiring. In the general case (for ω-complete semirings) it seems
that computing only a subset of the cells of the asteration matrix is at least as difficult as
computing the full asteration matrix. To the best of our knowledge, no result formally
stating this fact has ever appeared in the literature. The interest in our setting would
be to obtain formal lower bounds for the single-source or single-pair provenance. On
the other hand, devising parallel algorithms built upon the notion of eliminants [Abdali
1994] to provide an efficient computation of the full path provenance (understood as the
asteration of a matrix over a star semiring) seems quite promising, and could lead to effi-
cient solutions to compute the provenance over large transportation networks. Existing
solutions in the spirit of GraphBlas [Kepner et al. 2011], a framework for expressing
efficient parallel algorithms over large sparse graphs in the language of linear algebra
(notably involving semirings to describe the operations to be performed) are natural
candidates for designing an efficient parallel implementation of the full path provenance
in general semirings. Nevertheless, priority queue management is not trivially express-
ible into linear algebra operators, and also not easily amenable to parallelism. Thus,
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12. Reverse Translations and Opportunities

the provenance-aware algorithms we have focused on in our experiments such as Dijk-
stra, MultiDijkstra, or even Mohri are not subject to an implementation based on
GraphBlas (or any equivalent).

While working with Datalog provenance, we have shown in Section 12.2 a possible
application of the provenance model where the fixed-point semantics seems to not be
relevant. Describing a carefully chosen ω-complete semiring under the proof-theoretic
definition for Datalog provenance to provide sound semantics for AND/OR graphs could
make a case for generalizing the provenance model of [Green et al. 2007] to other semir-
ings structures, but at the cost of losing the equivalence between the proof-theoretic
and fixed-point semantics. Another issue has been raised concerning the optimization of
our implementation. The internals of Soufflé, targeting the inflationary computation
of the fixed-point operator lack support for updating tuples. We conjecture we could
mitigate the overhead induced by provenance computations within Soufflé-prov by
adding primitives in their data structures. What remains to be established is to what
extent these data structures [Jordan et al. 2016] could be extended to handle updates,
without reducing the efficiency of Soufflé’s current set of operators.
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MOTS CLÉS

Provenance, Graphes, Bases de données, Semi-anneaux, Datalog

RÉSUMÉ

L’augmentation du volume de données collectées par des capteurs et générées par des interactions humaines a mené
à l’utilisation des bases de données orientées graphes en tant que modèle de représentation efficace pour les données
complexes. Les techniques permettant de tracer les calculs qui ont été appliqués aux données au sein d’une base de
données relationnelle classique sont sur le devant de la scène, notamment grâce à leur utilité pour faire respecter les
régulations sur les données privées telles que le RGPD en Union Européenne. Notre travail de recherche croise ces deux
problématiques en s’intéressant à un modèle de provenance à base de semi-anneaux pour les requêtes navigationnelles.
Nous commençons par présenter une étude approfondie de la théorie des semi-anneaux et de leurs applications au sein
des sciences informatiques en se concentrant sur les résultats ayant un intérêt direct pour notre travail de recherche. La
richesse de la littérature sur le domaine nous a notamment permis d’obtenir une borne inférieure sur la complexité de
notre modèle. Dans une seconde partie, nous étudions le modèle en lui-même et introduisons un ensemble cohérent
d’algorithmes permettant d’effectuer des calculs de provenance et adaptés aux propriétés des semi-anneaux utilisés.
Nous introduisons notablement une nouvelle méthode basée sur la théorie des treillis permettant de calculer la prove-
nance pour des requêtes complexes. Nous proposons une implémentation open-source de ces algorithmes et faisons
une étude expérimentale sur de larges réseaux de transport issus de la vie réelle pour attester de l’efficacité pratique
de notre approche. On s’intéresse finalement au positionnement de ce cadre de travail par rapport à d’autres modèles
de provenance à base de semi-anneaux. Nous nous intéressons à Datalog en particulier. Nous démontrons que les
méthodes que nous avons développées pour les bases de données orientées graphes peuvent se généraliser sur des
requêtes Datalog. Nous montrons de plus qu’elles peuvent être vues comme des généralisations de la méthode semi-
naı̈ve. En se basant sur ce fait-là, nous étendons les capacités de SOUFFLÉ, un évaluateur Datalog appartenant à l’état
de l’art, afin d’effectuer des calculs de provenance pour des requêtes Datalog. Les études expérimentales basées sur
cette implémentation open-source confirment que cette approche reste compétitive avec les solutions spécifiques pour
les graphes, mais tout en étant plus générale. Nous terminons par une discussion sur les améliorations possibles du
modèle et énonçons les questions ouvertes qui ont été soulevées au cours de ce travail.

ABSTRACT

The growing amount of data collected by sensors or generated by human interaction has led to an increasing use of graph
databases, an efficient model for representing intricate data. Techniques to keep track of the history of computations
applied to the data inside classical relational database systems are also topical because of their application to enforce
Data Protection Regulations (e.g., GDPR). Our research work mixes the two by considering a semiring-based provenance
model for navigational queries over graph databases. We first present a comprehensive survey on semiring theory and
their applications in different fields of computer sciences, geared towards their relevance for our context. From the richness
of the literature, we notably obtain a lower bound for the complexity of the full provenance computation in our setting. In
a second part, we focus on the model itself by introducing a toolkit of provenance-aware algorithms, each targeting
specific properties of the semiring of use. We notably introduce a new method based on lattice theory permitting an
efficient provenance computation for complex graph queries. We propose an open-source implementation of the above-
mentioned algorithms, and we conduct an experimental study over real transportation networks of large size, witnessing
the practical efficiency of our approach in practical scenarios. We finally consider how this framework is positioned
compared to other provenance models such as the semiring-based Datalog provenance model. We make explicit how
the methods we applied for graph databases can be extended to Datalog queries, and we show how they can be seen as
an extension of the semi-naı̈ve evaluation strategy. To leverage this fact, we extend the capabilities of SOUFFLÉ, a state-
of-the-art Datalog solver, to design an efficient provenance-aware Datalog evaluator. Experimental results based on our
open-source implementation entail the fact this approach stays competitive with dedicated graph solutions, despite being
more general. In a final round, we discuss on some research ideas for improving the model, and state open questions
raised by our work.

KEYWORDS

Provenance, Graphs, Databases, Semirings, Datalog
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